BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23921181)

  • 1. Immobilization of heavy metals on pillared montmorillonite with a grafted chelate ligand.
    Brown L; Seaton K; Mohseni R; Vasiliev A
    J Hazard Mater; 2013 Oct; 261():181-7. PubMed ID: 23921181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metal extraction from an artificially contaminated sandy soil under EDDS deficiency: significance of humic acid and chelant mixture.
    Yip TC; Yan DY; Yui MM; Tsang DC; Lo IM
    Chemosphere; 2010 Jun; 80(4):416-21. PubMed ID: 20427074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Advances in research on in situ chemo-immobilization of heavy metals in contaminated soils].
    Guo G; Zhou Q; Li X
    Ying Yong Sheng Tai Xue Bao; 2005 Oct; 16(10):1990-6. PubMed ID: 16422528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium.
    Sen Gupta S; Bhattacharyya KG
    J Environ Manage; 2008 Apr; 87(1):46-58. PubMed ID: 17499423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A field lysimeter study of heavy metal movement down the profile of soils with multiple metal pollution during chelate-enhanced phytoremediation.
    Hu N; Luo Y; Wu L; Song J
    Int J Phytoremediation; 2007; 9(4):257-68. PubMed ID: 18246705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modified SBA-15 mesoporous silica for heavy metal ions remediation.
    Mureseanu M; Reiss A; Stefanescu I; David E; Parvulescu V; Renard G; Hulea V
    Chemosphere; 2008 Nov; 73(9):1499-504. PubMed ID: 18760443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances.
    Abollino O; Aceto M; Malandrino M; Sarzanini C; Mentasti E
    Water Res; 2003 Apr; 37(7):1619-27. PubMed ID: 12600390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1.
    Deng X; Chai L; Yang Z; Tang C; Tong H; Yuan P
    J Hazard Mater; 2012 Sep; 233-234():25-32. PubMed ID: 22795840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced heavy metal immobilization in soil by grinding with addition of nanometallic Ca/CaO dispersion mixture.
    Mallampati SR; Mitoma Y; Okuda T; Sakita S; Kakeda M
    Chemosphere; 2012 Oct; 89(6):717-23. PubMed ID: 22818089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interaction of heavy metals with urban soils: sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit.
    Markiewicz-Patkowska J; Hursthouse A; Przybyla-Kij H
    Environ Int; 2005 May; 31(4):513-21. PubMed ID: 15788192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption of Cu, Pb and Cr on Na-montmorillonite: competition and effect of major elements.
    Zhu J; Cozzolino V; Pigna M; Huang Q; Caporale AG; Violante A
    Chemosphere; 2011 Jul; 84(4):484-9. PubMed ID: 21481915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica.
    Li G; Zhao Z; Liu J; Jiang G
    J Hazard Mater; 2011 Aug; 192(1):277-83. PubMed ID: 21616588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of phenanthrene adsorption on a clayey soil and clay minerals by coexisting lead or cadmium.
    Zhang W; Zhuang L; Yuan Y; Tong L; Tsang DC
    Chemosphere; 2011 Apr; 83(3):302-10. PubMed ID: 21232783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption of phenanthrene by soils contaminated with heavy metals.
    Gao Y; Xiong W; Ling W; Xu J
    Chemosphere; 2006 Nov; 65(8):1355-61. PubMed ID: 16735048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific adsorption of cadmium on surface-engineered biocompatible organoclay under metal-phenanthrene mixed-contamination.
    Biswas B; Sarkar B; Mandal A; Naidu R
    Water Res; 2016 Nov; 104():119-127. PubMed ID: 27522022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Zn2GeO4-ethylenediamine hybrid nanoribbon membrane as a recyclable adsorbent for the highly efficient removal of heavy metals from contaminated water.
    Yu L; Zou R; Zhang Z; Song G; Chen Z; Yang J; Hu J
    Chem Commun (Camb); 2011 Oct; 47(38):10719-21. PubMed ID: 21879047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica.
    Aguado J; Arsuaga JM; Arencibia A; Lindo M; Gascón V
    J Hazard Mater; 2009 Apr; 163(1):213-21. PubMed ID: 18675509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of heavy metals from artificial metals contaminated water samples based on micelle-templated silica modified with pyoverdin I.
    Tansupo P; Worakarn C; Saksit C; Ruangviriyachai C
    J Environ Sci (China); 2009; 21(7):1009-16. PubMed ID: 19862971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of heavy metals through adsorption using sand.
    Awan MA; Qazi IA; Khalid I
    J Environ Sci (China); 2003 May; 15(3):413-6. PubMed ID: 12938995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of heavy metals in soil using two organo-bentonites.
    Yu K; Xu J; Jiang X; Liu C; McCall W; Lu J
    Chemosphere; 2017 Oct; 184():884-891. PubMed ID: 28651314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.