BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

729 related articles for article (PubMed ID: 23921235)

  • 41. Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases.
    Ruiz-Dueñas FJ; Morales M; García E; Miki Y; Martínez MJ; Martínez AT
    J Exp Bot; 2009; 60(2):441-52. PubMed ID: 18987391
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A proposed stepwise screening framework for the selection of polycyclic aromatic hydrocarbon (PAH)-degrading white rot fungi.
    Lee AH; Lee H; Heo YM; Lim YW; Kim CM; Kim GH; Chang W; Kim JJ
    Bioprocess Biosyst Eng; 2020 May; 43(5):767-783. PubMed ID: 31938872
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Purification and characterization of peroxidases from the dye-decolorizing fungus Bjerkandera adusta.
    Heinfling A; Martínez MJ; Martínez AT; Bergbauer M; Szewzyk U
    FEMS Microbiol Lett; 1998 Aug; 165(1):43-50. PubMed ID: 9711838
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polyporales genomes reveal the genetic architecture underlying tetrapolar and bipolar mating systems.
    James TY; Sun S; Li W; Heitman J; Kuo HC; Lee YH; Asiegbu FO; Olson A
    Mycologia; 2013; 105(6):1374-90. PubMed ID: 23928418
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of three mnp genes of Fomitiporia mediterranea and report of additional class II peroxidases in the order hymenochaetales.
    Morgenstern I; Robertson DL; Hibbett DS
    Appl Environ Microbiol; 2010 Oct; 76(19):6431-40. PubMed ID: 20675443
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Physiology and molecular biology of the lignin peroxidases of Phanerochaete chrysosporium.
    Reddy CA; D'Souza TM
    FEMS Microbiol Rev; 1994 Mar; 13(2-3):137-52. PubMed ID: 8167033
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes.
    Singh D; Chen S
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):399-417. PubMed ID: 18810426
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Complete decolorization of the anthraquinone dye Reactive blue 5 by the concerted action of two peroxidases from Thanatephorus cucumeris Dec 1.
    Sugano Y; Matsushima Y; Shoda M
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):862-71. PubMed ID: 16944133
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Direct oxidation of polymeric substrates by multifunctional manganese peroxidase isoenzyme from Pleurotus ostreatus without redox mediators.
    Kamitsuji H; Watanabe T; Honda Y; Kuwahara M
    Biochem J; 2005 Mar; 386(Pt 2):387-93. PubMed ID: 15461584
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparing Ligninolytic Capabilities of Bacterial and Fungal Dye-Decolorizing Peroxidases and Class-II Peroxidase-Catalases.
    Linde D; Ayuso-Fernández I; Laloux M; Aguiar-Cervera JE; de Lacey AL; Ruiz-Dueñas FJ; Martínez AT
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33807844
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcriptional response of lignin-degrading enzymes to 17α-ethinyloestradiol in two white rots.
    Přenosilová L; Křesinová Z; Amemori AS; Cajthaml T; Svobodová K
    Microb Biotechnol; 2013 May; 6(3):300-6. PubMed ID: 23170978
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anthraquinone dyes decolorization capacity of anamorphic Bjerkandera adusta CCBAS 930 strain and its HRP-like negative mutants.
    Korniłłowicz-Kowalska T; Rybczyńska K
    World J Microbiol Biotechnol; 2014 Jun; 30(6):1725-36. PubMed ID: 24415463
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lip-like genes in Phanerochaete sordida and Ceriporiopsis subvermispora, white rot fungi with no detectable lignin peroxidase activity.
    Rajakumar S; Gaskell J; Cullen D; Lobos S; Karahanian E; Vicuna R
    Appl Environ Microbiol; 1996 Jul; 62(7):2660-3. PubMed ID: 8779605
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Substrate specificity of lignin peroxidase and a S168W variant of manganese peroxidase.
    Timofeevski SL; Nie G; Reading NS; Aust SD
    Arch Biochem Biophys; 2000 Jan; 373(1):147-53. PubMed ID: 10620333
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Degradation of poplar wood by Fomes sclerodermeus: production of ligninolytic enzymes in sawdust of poplar and cedar].
    Papinutti VL; Diorio LA; Forchiassin F
    Rev Iberoam Micol; 2003 Mar; 20(1):16-20. PubMed ID: 12825976
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Manganese-lignin peroxidase hybrid from Bjerkandera adusta oxidizes polycyclic aromatic hydrocarbons more actively in the absence of manganese.
    Wang Y; Vazquez-Duhalt R; Pickard MA
    Can J Microbiol; 2003 Nov; 49(11):675-82. PubMed ID: 14735217
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes.
    Liers C; Bobeth C; Pecyna M; Ullrich R; Hofrichter M
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1869-79. PubMed ID: 19756587
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mn²⁺-deficiency reveals a key role for the Pleurotus ostreatus versatile peroxidase (VP4) in oxidation of aromatic compounds.
    Knop D; Ben-Ari J; Salame TM; Levinson D; Yarden O; Hadar Y
    Appl Microbiol Biotechnol; 2014 Aug; 98(15):6795-804. PubMed ID: 24737058
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxidation of lignin in eucalyptus kraft pulp by manganese peroxidase from Bjerkandera sp. strain BOS55.
    Moreira MT; Sierra-Alvarez R; Lema JM; Feijoo G; Field JA
    Bioresour Technol; 2001 May; 78(1):71-9. PubMed ID: 11265791
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Estimation of bound and free fractions of lignocellulose-degrading enzymes of wood-rotting fungi Pleurotus ostreatus, Trametes versicolor and Piptoporus betulinus.
    Valásková V; Baldrian P
    Res Microbiol; 2006 Mar; 157(2):119-24. PubMed ID: 16125911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.