These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
447 related articles for article (PubMed ID: 23921598)
21. Resveratrol analogue HS-1793 induces the modulation of tumor-derived T cells. Choi YJ; Yang KM; Kim SD; Yoo YH; Lee SW; Seo SY; Suh H; Yee ST; Jeong MH; Jo WS Exp Ther Med; 2012 Apr; 3(4):592-598. PubMed ID: 22969934 [TBL] [Abstract][Full Text] [Related]
22. Alternative metabolic routes in channeling xylose to cordycepin production of Cordyceps militaris identified by comparative transcriptome analysis. Wongsa B; Raethong N; Chumnanpuen P; Wong-Ekkabut J; Laoteng K; Vongsangnak W Genomics; 2020 Jan; 112(1):629-636. PubMed ID: 31022437 [TBL] [Abstract][Full Text] [Related]
23. Cordycepin, a metabolite of Cordyceps militaris, reduces immune-related gene expression in insects. Woolley VC; Teakle GR; Prince G; de Moor CH; Chandler D J Invertebr Pathol; 2020 Nov; 177():107480. PubMed ID: 33022282 [TBL] [Abstract][Full Text] [Related]
24. [High-yielding cordycepin in Cordyceps militaris modified by low-energy ion beam]. Li W; Zhao S; Chen H; Yuan H; Wang T; Huang X Sheng Wu Gong Cheng Xue Bao; 2009 Nov; 25(11):1725-31. PubMed ID: 20222474 [TBL] [Abstract][Full Text] [Related]
25. The Inhibitory Effect of Cordycepin on the Proliferation of MCF-7 Breast Cancer Cells, and its Mechanism: An Investigation Using Network Pharmacology-Based Analysis. Lee D; Lee WY; Jung K; Kwon YS; Kim D; Hwang GS; Kim CE; Lee S; Kang KS Biomolecules; 2019 Aug; 9(9):. PubMed ID: 31454995 [No Abstract] [Full Text] [Related]
26. Functional Analysis of Ribonucleotide Reductase from Cordyceps militaris Expressed in Escherichia coli. Kato T; Ahmad S; Park EY Appl Biochem Biotechnol; 2017 Aug; 182(4):1307-1317. PubMed ID: 28074332 [TBL] [Abstract][Full Text] [Related]
27. A novel protein with anti-metastasis activity on 4T1 carcinoma from medicinal fungus Cordyceps militaris. Yang Q; Yin Y; Yu G; Jin Y; Ye X; Shrestha A; Liu W; Yu W; Sun H Int J Biol Macromol; 2015 Sep; 80():385-91. PubMed ID: 26136144 [TBL] [Abstract][Full Text] [Related]
28. [Tumor infiltrating regulatory T cells in human breast cancer and associated draining lymph nodes: an in-situ analysis]. Wang HY; Shi QF; Sun Y; He JJ; Wang YL Zhonghua Bing Li Xue Za Zhi; 2013 Feb; 42(2):95-100. PubMed ID: 23710915 [TBL] [Abstract][Full Text] [Related]
29. Cordycepin induces apoptosis in human bladder cancer cells via activation of A3 adenosine receptors. Cao HL; Liu ZJ; Chang Z Tumour Biol; 2017 Jul; 39(7):1010428317706915. PubMed ID: 28714368 [TBL] [Abstract][Full Text] [Related]
30. Extract of Cordyceps militaris inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells. Ruma IM; Putranto EW; Kondo E; Watanabe R; Saito K; Inoue Y; Yamamoto K; Nakata S; Kaihata M; Murata H; Sakaguchi M Int J Oncol; 2014 Jul; 45(1):209-18. PubMed ID: 24789042 [TBL] [Abstract][Full Text] [Related]
31. Cordyceps militaris mushroom and cordycepin inhibit RANKL-induced osteoclast differentiation. Kim J; Lee H; Kang KS; Chun KH; Hwang GS J Med Food; 2015 Apr; 18(4):446-52. PubMed ID: 25789604 [TBL] [Abstract][Full Text] [Related]
32. Induction of apoptosis by cordycepin via reactive oxygen species generation in human leukemia cells. Jeong JW; Jin CY; Park C; Hong SH; Kim GY; Jeong YK; Lee JD; Yoo YH; Choi YH Toxicol In Vitro; 2011 Jun; 25(4):817-24. PubMed ID: 21310227 [TBL] [Abstract][Full Text] [Related]
33. Interleukin-7 enhances the in vivo anti-tumor activity of tumor-reactive CD8+ T cells with induction of IFN-gamma in a murine breast cancer model. Yuan CH; Yang XQ; Zhu CL; Liu SP; Wang BC; Wang FB Asian Pac J Cancer Prev; 2014; 15(1):265-71. PubMed ID: 24528037 [TBL] [Abstract][Full Text] [Related]
34. [Investigations on cordycepin production by solid culture of Cordyceps militaris]. Wei HP; Ye XL; Zhang HY; Li XG; Zhong YJ Zhongguo Zhong Yao Za Zhi; 2008 Oct; 33(19):2159-62. PubMed ID: 19165995 [TBL] [Abstract][Full Text] [Related]
35. IL-2 contributes to maintaining a balance between CD4+Foxp3+ regulatory T cells and effector CD4+ T cells required for immune control of blood-stage malaria infection. Berretta F; St-Pierre J; Piccirillo CA; Stevenson MM J Immunol; 2011 Apr; 186(8):4862-71. PubMed ID: 21389253 [TBL] [Abstract][Full Text] [Related]
36. Inhibition of allogenic T-cell cytotoxicity by hepatic stellate cell via CD4⁺ CD25⁺ Foxp3⁺ regulatory T cells in vitro. Wu TJ; Wang YC; Wu TH; Lee CF; Chan KM; Lee WC Transplant Proc; 2012 May; 44(4):1055-9. PubMed ID: 22564624 [TBL] [Abstract][Full Text] [Related]
37. Insight into cordycepin biosynthesis of Cordyceps militaris: Comparison between a liquid surface culture and a submerged culture through transcriptomic analysis. Suparmin A; Kato T; Dohra H; Park EY PLoS One; 2017; 12(11):e0187052. PubMed ID: 29091925 [TBL] [Abstract][Full Text] [Related]
38. Metabolomic profiling reveals enrichment of cordycepin in senescence process of Cordyceps militaris fruit bodies. Oh J; Yoon DH; Shrestha B; Choi HK; Sung GH J Microbiol; 2019 Jan; 57(1):54-63. PubMed ID: 30594983 [TBL] [Abstract][Full Text] [Related]
39. Production of cordycepin and mycelia by submerged fermentation of Cordyceps militaris in mixture natural culture. Xie CY; Gu ZX; Fan GJ; Gu FR; Han YB; Chen ZG Appl Biochem Biotechnol; 2009 Aug; 158(2):483-92. PubMed ID: 19247587 [TBL] [Abstract][Full Text] [Related]
40. CD4+FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Grauer OM; Nierkens S; Bennink E; Toonen LW; Boon L; Wesseling P; Sutmuller RP; Adema GJ Int J Cancer; 2007 Jul; 121(1):95-105. PubMed ID: 17315190 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]