BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 239220)

  • 1. Postnatal elevation of brain tyrosine hydroxylase activity, without concurrent increases in steady-state catecholamine levels, resulting from dl-alpha-methylparatyrosine administration during embryonic development.
    Lydiard RB; Fossom LH; Sparber SB
    J Pharmacol Exp Ther; 1975 Jul; 194(1):27-36. PubMed ID: 239220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for a critical period for postnatal elevation of brain tyrosine hydroxylase activity resulting from reserpine administration during embryonic development.
    Lydiard RB; Sparber SB
    J Pharmacol Exp Ther; 1974 May; 189(2):370-9. PubMed ID: 4151393
    [No Abstract]   [Full Text] [Related]  

  • 3. Postnatal behavioral alterations resulting from prenatal administration of dl-alphamethylparatyrosine.
    Lydiard RB; Sparber SB
    Dev Psychobiol; 1977 Jul; 10(4):305-14. PubMed ID: 559606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alpha-methyl-para-tyrosine effects in mice selectively bred for differences in sensitivity to ethanol.
    French TA; Clay KL; Murphy RC; Weiner N
    Biochem Pharmacol; 1985 Nov; 34(21):3811-21. PubMed ID: 2865956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of reserpine on activities and amounts of tyrosine hydroxylase and dopamine-beta-hydroxylase in catecholamine neuronal systems in rat brain.
    Reis DJ; Joh TH; Ross RA
    J Pharmacol Exp Ther; 1975 Jun; 193(3):775-84. PubMed ID: 239215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A developmental role for catecholamines in Drosophila behavior.
    Pendleton RG; Rasheed A; Paluru P; Joyner J; Jerome N; Meyers RD; Hillman R
    Pharmacol Biochem Behav; 2005 Aug; 81(4):849-53. PubMed ID: 16051344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurochemical characteristics of cerebral catecholamine neurons during the postnatal development in the rat.
    Hedner T; Lundborg P
    Med Biol; 1981 Aug; 59(4):212-23. PubMed ID: 6803074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transsynaptic activity regulates proenkephalin and tyrosine hydroxylase gene expression and the response to reserpine in the hamster adrenal.
    Franklin SO; Zhu YS; Yoburn BC; Inturrisi CE
    Mol Pharmacol; 1991 Oct; 40(4):515-22. PubMed ID: 1717819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain uptake of alpha-[14C]methyl-para-tyrosine in the rat.
    Cumming P; Venkatachalam TK; Rajagopal S; Diksic M; Gjedde A
    Synapse; 1994 Jun; 17(2):125-8. PubMed ID: 7916491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Designer" amphetamines: effects on behavior and monoamines with or without reserpine and/or alpha-methyl-para-tyrosine pretreatment.
    Martin-Iverson MT; Yamada N; By AW; Lodge BA
    J Psychiatry Neurosci; 1991 Dec; 16(5):253-61. PubMed ID: 1686728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental studies on hatching behavior in the chick. IV. Evidence for the role of a noradrenergic mechanism.
    Pittman R; Oppenheim R; Ramakrishna T
    J Exp Zool; 1978 Apr; 204(1):95-112. PubMed ID: 641484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and aging of noradrenergic cell bodies and axon terminals in the chicken.
    Yurkewicz L; Marchi M; Lauder JM; Giacobini E
    J Neurosci Res; 1981; 6(5):621-41. PubMed ID: 6119368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The brain catecholamine systems in the regulation of dominance].
    Serova LI; Naumenko EV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1990; 40(3):490-6. PubMed ID: 1975967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of prenatal reserpine administration on development of the rat adrenal medulla and central nervous system.
    Bartolomé J; Seidler FJ; Anderson TR; Slotkin TA
    J Pharmacol Exp Ther; 1976 May; 197(2):293-302. PubMed ID: 1271281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repeated exposure of adult rats to Aroclor 1254 causes brain region-specific changes in intracellular Ca2+ buffering and protein kinase C activity in the absence of changes in tyrosine hydroxylase.
    Kodavanti PR; Derr-Yellin EC; Mundy WR; Shafer TJ; Herr DW; Barone S; Choksi NY; MacPhail RC; Tilson HA
    Toxicol Appl Pharmacol; 1998 Dec; 153(2):186-98. PubMed ID: 9878590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prolonged inhibition of presynaptic catecholamine synthesis with alpha-methyl-para-tyrosine attenuates the circadian rhythm of human TSH secretion.
    Zimmermann RC; Krahn LE; Klee GG; Ditkoff EC; Ory SJ; Sauer MV
    J Soc Gynecol Investig; 2001; 8(3):174-8. PubMed ID: 11390253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of tyrosine hydroxylase and GTP cyclohydrolase I gene expression to estrogen in brain catecholaminergic regions varies with mode of administration.
    Serova LI; Maharjan S; Huang A; Sun D; Kaley G; Sabban EL
    Brain Res; 2004 Jul; 1015(1-2):1-8. PubMed ID: 15223360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated catecholamines in thirty-day-old chicken brain after depletion during development.
    Sparber SS; Shideman FE
    Dev Psychobiol; 1970; 3(2):123-9. PubMed ID: 5527429
    [No Abstract]   [Full Text] [Related]  

  • 19. Influence of neonatal and adult hyperthyroidism on behavior and biosynthetic capacity for norepinephrine, dopamine and 5-hydroxytryptamine in rat brain.
    Rastogi RB; Singhal RL
    J Pharmacol Exp Ther; 1976 Sep; 198(3):609-18. PubMed ID: 978462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endogenous tetrahydroisoquinolines associated with Parkinson's disease mimic the feedback inhibition of tyrosine hydroxylase by catecholamines.
    Scholz J; Toska K; Luborzewski A; Maass A; Schünemann V; Haavik J; Moser A
    FEBS J; 2008 May; 275(9):2109-21. PubMed ID: 18355318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.