BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 23922124)

  • 1. Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters.
    Yousefi S; Qin J; Zhi Z; Wang RK
    J Biomed Opt; 2013 Aug; 18(8):86004. PubMed ID: 23922124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmentation and quantification of blood vessels for OCT-based micro-angiograms using hybrid shape/intensity compounding.
    Yousefi S; Liu T; Wang RK
    Microvasc Res; 2015 Jan; 97():37-46. PubMed ID: 25283347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lymph vessels visualization from optical coherence tomography data using depth-resolved attenuation coefficient calculation.
    Moiseev AA; Sirotkina MA; Potapov AL; Matveev LA; Vagapova NN; Kuznetsova IA; Gladkova ND
    J Biophotonics; 2021 Sep; 14(9):e202100055. PubMed ID: 34057296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lymphatic response to depilation-induced inflammation in mouse ear assessed with label-free optical lymphangiography.
    Qin W; Baran U; Wang R
    Lasers Surg Med; 2015 Oct; 47(8):669-76. PubMed ID: 26224650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography.
    Tsantis S; Kagadis GC; Katsanos K; Karnabatidis D; Bourantas G; Nikiforidis GC
    Med Phys; 2012 Jan; 39(1):503-13. PubMed ID: 22225321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free volumetric imaging of conjunctival collecting lymphatics ex vivo by optical coherence tomography lymphangiography.
    Gong P; Yu DY; Wang Q; Yu PK; Karnowski K; Heisler M; Francke A; An D; Sarunic MV; Sampson DD
    J Biophotonics; 2018 Aug; 11(8):e201800070. PubMed ID: 29920959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parametric imaging of cancer with optical coherence tomography.
    McLaughlin RA; Scolaro L; Robbins P; Saunders C; Jacques SL; Sampson DD
    J Biomed Opt; 2010; 15(4):046029. PubMed ID: 20799831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping tissue optical attenuation to identify cancer using optical coherence tomography.
    McLaughlin RA; Scolaro L; Robbins P; Saunders C; Jacques SL; Sampson DD
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):657-64. PubMed ID: 20426168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic Vessel Shade-Robust Segmentation of Retinal Layers in OCT Images.
    González-López A; Ortega M; Penedo MG; Charlón P
    Stud Health Technol Inform; 2014; 207():47-54. PubMed ID: 25488210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An accurate multimodal 3-D vessel segmentation method based on brightness variations on OCT layers and curvelet domain fundus image analysis.
    Kafieh R; Rabbani H; Hajizadeh F; Ommani M
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2815-23. PubMed ID: 23722446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathology hinting as the combination of automatic segmentation with a statistical shape model.
    Dufour PA; Abdillahi H; Ceklic L; Wolf-Schnurrbusch U; Kowal J
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):599-606. PubMed ID: 23286180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free optical imaging of lymphatic vessels within tissue beds
    Yousefi S; Zhi Z; Wang RK
    IEEE J Sel Top Quantum Electron; 2014; 20(2):6800510. PubMed ID: 25642129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT).
    Li Q; Onozato ML; Andrews PM; Chen CW; Paek A; Naphas R; Yuan S; Jiang J; Cable A; Chen Y
    Opt Express; 2009 Aug; 17(18):16000-16. PubMed ID: 19724599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variables affecting polarization-sensitive optical coherence tomography imaging examined through the modeling of birefringent phantoms.
    Liu B; Harman M; Brezinski ME
    J Opt Soc Am A Opt Image Sci Vis; 2005 Feb; 22(2):262-71. PubMed ID: 15717555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated drusen segmentation and quantification in SD-OCT images.
    Chen Q; Leng T; Zheng L; Kutzscher L; Ma J; de Sisternes L; Rubin DL
    Med Image Anal; 2013 Dec; 17(8):1058-72. PubMed ID: 23880375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis.
    Cheng Y; Larin KV
    Appl Opt; 2006 Dec; 45(36):9238-45. PubMed ID: 17151765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intra-retinal layer segmentation in optical coherence tomography images.
    Mishra A; Wong A; Bizheva K; Clausi DA
    Opt Express; 2009 Dec; 17(26):23719-28. PubMed ID: 20052083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A framework for computational fluid dynamic analyses of patient-specific stented coronary arteries from optical coherence tomography images.
    Migliori S; Chiastra C; Bologna M; Montin E; Dubini G; Aurigemma C; Fedele R; Burzotta F; Mainardi L; Migliavacca F
    Med Eng Phys; 2017 Sep; 47():105-116. PubMed ID: 28711588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational methods for analysis of human breast tumor tissue in optical coherence tomography images.
    Zysk AM; Boppart SA
    J Biomed Opt; 2006; 11(5):054015. PubMed ID: 17092164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic three-dimensional registration of intravascular optical coherence tomography images.
    Ughi GJ; Adriaenssens T; Larsson M; Dubois C; Sinnaeve PR; Coosemans M; Desmet W; D'hooge J
    J Biomed Opt; 2012 Feb; 17(2):026005. PubMed ID: 22463037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.