BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 23922703)

  • 1. Porous allograft bone scaffolds: doping with strontium.
    Zhao Y; Guo D; Hou S; Zhong H; Yan J; Zhang C; Zhou Y
    PLoS One; 2013; 8(7):e69339. PubMed ID: 23922703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sr-HA scaffolds fabricated by SPS technology promote the repair of segmental bone defects.
    Hu B; Meng ZD; Zhang YQ; Ye LY; Wang CJ; Guo WC
    Tissue Cell; 2020 Oct; 66():101386. PubMed ID: 32933709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration.
    Zhang J; Zhao S; Zhu Y; Huang Y; Zhu M; Tao C; Zhang C
    Acta Biomater; 2014 May; 10(5):2269-81. PubMed ID: 24412143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds.
    Meininger S; Mandal S; Kumar A; Groll J; Basu B; Gbureck U
    Acta Biomater; 2016 Feb; 31():401-411. PubMed ID: 26621692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of strontium-containing on the properties of Mg-doped wollastonite bioceramic scaffolds.
    Wang S; Liu L; Zhou X; Yang D; Shi Z; Hao Y
    Biomed Eng Online; 2019 Dec; 18(1):119. PubMed ID: 31829229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of three dimensional bioactive Sr
    Ramadas M; Ferreira JMF; Ballamurugan AM
    J Tissue Eng Regen Med; 2021 Jun; 15(6):577-585. PubMed ID: 33843156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of pH on the chelation between strontium ions and decellularized small intestinal submucosal sponge scaffolds].
    Li YK; Wang M; Tang L; Liu YH; Chen XY
    Beijing Da Xue Xue Bao Yi Xue Ban; 2023 Feb; 55(1):44-51. PubMed ID: 36718688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printing of strontium-doped hydroxyapatite based composite scaffolds for repairing critical-sized rabbit calvarial defects.
    Luo Y; Chen S; Shi Y; Ma J
    Biomed Mater; 2018 Aug; 13(6):065004. PubMed ID: 30091422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of strontium substitution on the material properties and osteogenic potential of 3D powder printed magnesium phosphate scaffolds.
    Meininger S; Moseke C; Spatz K; März E; Blum C; Ewald A; Vorndran E
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1145-1158. PubMed ID: 30812998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering.
    Wu C; Zhou Y; Lin C; Chang J; Xiao Y
    Acta Biomater; 2012 Oct; 8(10):3805-15. PubMed ID: 22750735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional Printed Mg-Doped β-TCP Bone Tissue Engineering Scaffolds: Effects of Magnesium Ion Concentration on Osteogenesis and Angiogenesis
    Gu Y; Zhang J; Zhang X; Liang G; Xu T; Niu W
    Tissue Eng Regen Med; 2019 Aug; 16(4):415-429. PubMed ID: 31413945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds.
    Khan PK; Mahato A; Kundu B; Nandi SK; Mukherjee P; Datta S; Sarkar S; Mukherjee J; Nath S; Balla VK; Mandal C
    Sci Rep; 2016 Sep; 6():32964. PubMed ID: 27604654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of K/Sr co-doped calcium polyphosphate bioceramic as scaffolds for bone substitutes.
    Xie H; Wang Q; Ye Q; Wan C; Li L
    J Mater Sci Mater Med; 2012 Apr; 23(4):1033-44. PubMed ID: 22311075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteogenesis effects of strontium-substituted hydroxyapatite coatings on true bone ceramic surfaces in vitro and in vivo.
    Li J; Yang L; Guo X; Cui W; Yang S; Wang J; Qu Y; Shao Z; Xu S
    Biomed Mater; 2017 Dec; 13(1):015018. PubMed ID: 28862155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro study on the degradation of lithium-doped hydroxyapatite for bone tissue engineering scaffold.
    Wang Y; Yang X; Gu Z; Qin H; Li L; Liu J; Yu X
    Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():185-192. PubMed ID: 27207053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on strontium doped tricalcium silicate synthesized through sol-gel process.
    Liu WC; Hu CC; Tseng YY; Sakthivel R; Fan KS; Wang AN; Wang YM; Chung RJ
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110431. PubMed ID: 31923972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bioceramic scaffold composed of strontium-doped three-dimensional hydroxyapatite whiskers for enhanced bone regeneration in osteoporotic defects.
    Zhao R; Chen S; Zhao W; Yang L; Yuan B; Ioan VS; Iulian AV; Yang X; Zhu X; Zhang X
    Theranostics; 2020; 10(4):1572-1589. PubMed ID: 32042323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface functionalization of cuttlefish bone-derived biphasic calcium phosphate scaffolds with polymeric coatings.
    Neto AS; Fonseca AC; Abrantes JCC; Coelho JFJ; Ferreira JMF
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110014. PubMed ID: 31546414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.
    Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofunctional Ionic-Doped Calcium Phosphates: Silk Fibroin Composites for Bone Tissue Engineering Scaffolding.
    Pina S; Canadas RF; Jiménez G; Perán M; Marchal JA; Reis RL; Oliveira JM
    Cells Tissues Organs; 2017; 204(3-4):150-163. PubMed ID: 28803246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.