These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23922769)

  • 21. Toward automatic behavioral screen: a computational model for analyzing Caenorhabditis elegans locomotion.
    Zhou B; Baek J
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4937-40. PubMed ID: 19963872
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Viscoelastic properties of the nematode Caenorhabditis elegans, a self-similar, shear-thinning worm.
    Backholm M; Ryu WS; Dalnoki-Veress K
    Proc Natl Acad Sci U S A; 2013 Mar; 110(12):4528-33. PubMed ID: 23460699
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-dimensional behavioural phenotyping of freely moving C. elegans using quantitative light field microscopy.
    Shaw M; Zhan H; Elmi M; Pawar V; Essmann C; Srinivasan MA
    PLoS One; 2018; 13(7):e0200108. PubMed ID: 29995960
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reversal frequency in Caenorhabditis elegans represents an integrated response to the state of the animal and its environment.
    Zhao B; Khare P; Feldman L; Dent JA
    J Neurosci; 2003 Jun; 23(12):5319-28. PubMed ID: 12832557
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-throughput behavioral analysis in C. elegans.
    Swierczek NA; Giles AC; Rankin CH; Kerr RA
    Nat Methods; 2011 Jun; 8(7):592-8. PubMed ID: 21642964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-Throughput Analysis of Behavior Under the Control of Optogenetics in Caenorhabditis elegans.
    Yu AJ; McDiarmid TA; Ardiel EL; Rankin CH
    Curr Protoc Neurosci; 2019 Jan; 86(1):e57. PubMed ID: 30387915
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multi-well imaging of development and behavior in Caenorhabditis elegans.
    Yu CC; Raizen DM; Fang-Yen C
    J Neurosci Methods; 2014 Feb; 223():35-9. PubMed ID: 24321627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hierarchical compression of Caenorhabditis elegans locomotion reveals phenotypic differences in the organization of behaviour.
    Gomez-Marin A; Stephens GJ; Brown AE
    J R Soc Interface; 2016 Aug; 13(121):. PubMed ID: 27581484
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous optogenetic manipulation and calcium imaging in freely moving C. elegans.
    Shipley FB; Clark CM; Alkema MJ; Leifer AM
    Front Neural Circuits; 2014; 8():28. PubMed ID: 24715856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An imaging system for standardized quantitative analysis of C. elegans behavior.
    Feng Z; Cronin CJ; Wittig JH; Sternberg PW; Schafer WR
    BMC Bioinformatics; 2004 Aug; 5():115. PubMed ID: 15331023
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automated recognition and analysis of head thrashes behavior in C. elegans.
    Zhang H; Gao S; Chen W
    BMC Bioinformatics; 2022 Mar; 23(1):87. PubMed ID: 35255825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic-based electrotaxis for on-demand quantitative analysis of Caenorhabditis elegans' locomotion.
    Tong J; Rezai P; Salam S; Selvaganapathy PR; Gupta BP
    J Vis Exp; 2013 May; (75):e50226. PubMed ID: 23665669
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel automated rodent tracker (ART), demonstrated in a mouse model of amyotrophic lateral sclerosis.
    Hewitt BM; Yap MH; Hodson-Tole EF; Kennerley AJ; Sharp PS; Grant RA
    J Neurosci Methods; 2018 Apr; 300():147-156. PubMed ID: 28414047
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Powerful and interpretable behavioural features for quantitative phenotyping of
    Javer A; Ripoll-Sánchez L; Brown AEX
    Philos Trans R Soc Lond B Biol Sci; 2018 Sep; 373(1758):. PubMed ID: 30201839
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-term imaging of circadian locomotor rhythms of a freely crawling C. elegans population.
    Winbush A; Gruner M; Hennig GW; van der Linden AM
    J Neurosci Methods; 2015 Jul; 249():66-74. PubMed ID: 25911068
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tracking movement behavior of multiple worms on food.
    Yemini E; Kerr RA; Schafer WR
    Cold Spring Harb Protoc; 2011 Dec; 2011(12):1483-7. PubMed ID: 22135669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Locomotion of C. elegans: a piecewise-harmonic curvature representation of nematode behavior.
    Padmanabhan V; Khan ZS; Solomon DE; Armstrong A; Rumbaugh KP; Vanapalli SA; Blawzdziewicz J
    PLoS One; 2012; 7(7):e40121. PubMed ID: 22792224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. From head to tail: a neuromechanical model of forward locomotion in
    Izquierdo EJ; Beer RD
    Philos Trans R Soc Lond B Biol Sci; 2018 Sep; 373(1758):. PubMed ID: 30201838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A microfluidic device for efficient chemical testing using Caenorhabditis elegans.
    Song P; Zhang W; Sobolevski A; Bernard K; Hekimi S; Liu X
    Biomed Microdevices; 2015 Apr; 17(2):38. PubMed ID: 25744157
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of samples for single-worm tracking.
    Yemini E; Kerr RA; Schafer WR
    Cold Spring Harb Protoc; 2011 Dec; 2011(12):1475-9. PubMed ID: 22135667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.