BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23922918)

  • 1. Isolation and characterization of a conserved domain in the eremophyte H+-PPase family.
    Wang Y; Jin S; Wang M; Zhu L; Zhang X
    PLoS One; 2013; 8(7):e70099. PubMed ID: 23922918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure, functional evolution, and evolutionary trajectories of the H
    Zhang Y; Feng X; Wang L; Su Y; Chu Z; Sun Y
    BMC Genomics; 2020 Mar; 21(1):195. PubMed ID: 32122295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of inorganic pyrophosphatase from Helicobacter pylori.
    Wu CA; Lokanath NK; Kim DY; Park HJ; Hwang HY; Kim ST; Suh SW; Kim KK
    Acta Crystallogr D Biol Crystallogr; 2005 Nov; 61(Pt 11):1459-64. PubMed ID: 16239722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A CBS domain-containing pyrophosphatase of Moorella thermoacetica is regulated by adenine nucleotides.
    Jämsen J; Tuominen H; Salminen A; Belogurov GA; Magretova NN; Baykov AA; Lahti R
    Biochem J; 2007 Dec; 408(3):327-33. PubMed ID: 17714078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and kinetic features of family I inorganic pyrophosphatase from Vibrio cholerae.
    Rodina EV; Samygina VR; Vorobyeva NN; Sitnik TS; Kurilova SA; Nazarova TI
    Biochemistry (Mosc); 2009 Jul; 74(7):734-42. PubMed ID: 19747093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane-integral pyrophosphatase subfamily capable of translocating both Na+ and H+.
    Luoto HH; Baykov AA; Lahti R; Malinen AM
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1255-60. PubMed ID: 23297210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H+-PPases: yesterday, today and tomorrow.
    Serrano A; Pérez-Castiñeira JR; Baltscheffsky M; Baltscheffsky H
    IUBMB Life; 2007 Feb; 59(2):76-83. PubMed ID: 17454298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome.
    Seufferheld MJ; Kim KM; Whitfield J; Valerio A; Caetano-Anollés G
    Biol Direct; 2011 Oct; 6():50. PubMed ID: 21974828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-specific effects of zinc on the activity of family II pyrophosphatase.
    Zyryanov AB; Tammenkoski M; Salminen A; Kolomiytseva GY; Fabrichniy IP; Goldman A; Lahti R; Baykov AA
    Biochemistry; 2004 Nov; 43(45):14395-402. PubMed ID: 15533044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The tetrameric structure of nucleotide-regulated pyrophosphatase and its modulation by deletion mutagenesis and ligand binding.
    Anashkin VA; Salminen A; Orlov VN; Lahti R; Baykov AA
    Arch Biochem Biophys; 2020 Oct; 692():108537. PubMed ID: 32810477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and expression of a unique inorganic pyrophosphatase from Bacillus subtilis: evidence for a new family of enzymes.
    Shintani T; Uchiumi T; Yonezawa T; Salminen A; Baykov AA; Lahti R; Hachimori A
    FEBS Lett; 1998 Nov; 439(3):263-6. PubMed ID: 9845334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical, Structural and Physiological Characteristics of Vacuolar H+-Pyrophosphatase.
    Segami S; Asaoka M; Kinoshita S; Fukuda M; Nakanishi Y; Maeshima M
    Plant Cell Physiol; 2018 Jul; 59(7):1300-1308. PubMed ID: 29534212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presence of a plant-like proton-translocating pyrophosphatase in a scuticociliate parasite and its role as a possible drug target.
    Mallo N; Lamas J; Piazzon C; Leiro JM
    Parasitology; 2015 Mar; 142(3):449-62. PubMed ID: 25118804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and biochemical characterization of inorganic pyrophosphatase from Homo sapiens.
    Hu F; Huang Z; Zheng S; Wu Q; Chen Y; Lin H; Huang W; Li L
    Biochem Biophys Res Commun; 2020 Dec; 533(4):1115-1121. PubMed ID: 33036755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rates of elementary catalytic steps for different metal forms of the family II pyrophosphatase from Streptococcus gordonii.
    Zyryanov AB; Vener AV; Salminen A; Goldman A; Lahti R; Baykov AA
    Biochemistry; 2004 Feb; 43(4):1065-74. PubMed ID: 14744152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural studies of metal ions in family II pyrophosphatases: the requirement for a Janus ion.
    Fabrichniy IP; Lehtiö L; Salminen A; Zyryanov AB; Baykov AA; Lahti R; Goldman A
    Biochemistry; 2004 Nov; 43(45):14403-11. PubMed ID: 15533045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidating the role of conserved glutamates in H+-pyrophosphatase of Rhodospirillum rubrum.
    Malinen AM; Belogurov GA; Salminen M; Baykov AA; Lahti R
    J Biol Chem; 2004 Jun; 279(26):26811-6. PubMed ID: 15107429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The inorganic pyrophosphatases of microorganisms: a structural and functional review.
    García-Contreras R; de la Mora J; Mora-Montes HM; Martínez-Álvarez JA; Vicente-Gómez M; Padilla-Vaca F; Vargas-Maya NI; Franco B
    PeerJ; 2024; 12():e17496. PubMed ID: 38938619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presence of an isoform of H+-pyrophosphatase located in the alveolar sacs of a scuticociliate parasite of turbot: physiological consequences.
    Mallo N; Lamas J; Defelipe AP; Decastro ME; Sueiro RA; Leiro JM
    Parasitology; 2016 Apr; 143(5):576-87. PubMed ID: 26932195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of functional Streptomyces coelicolor H+-pyrophosphatase and characterization of its molecular properties.
    Hirono M; Mimura H; Nakanishi Y; Maeshima M
    J Biochem; 2005 Aug; 138(2):183-91. PubMed ID: 16091593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.