These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 23922927)

  • 1. Recognition of higher order patterns in proteins: immunologic kernels.
    Bremel RD; Homan EJ
    PLoS One; 2013; 8(7):e70115. PubMed ID: 23922927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of a Predictive Cleavage Motif for Eluted Major Histocompatibility Complex Class II Ligands.
    Paul S; Karosiene E; Dhanda SK; Jurtz V; Edwards L; Nielsen M; Sette A; Peters B
    Front Immunol; 2018; 9():1795. PubMed ID: 30127785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition of core and flanking amino acids of MHC class II-bound peptides by the T cell receptor.
    Sant'Angelo DB; Robinson E; Janeway CA; Denzin LK
    Eur J Immunol; 2002 Sep; 32(9):2510-20. PubMed ID: 12207335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico prediction of peptide-MHC binding affinity using SVRMHC.
    Liu W; Wan J; Meng X; Flower DR; Li T
    Methods Mol Biol; 2007; 409():283-91. PubMed ID: 18450008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of a pathway of antigen processing and class II MHC peptide capture.
    Moss CX; Tree TI; Watts C
    EMBO J; 2007 Apr; 26(8):2137-47. PubMed ID: 17396153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of MHC class II restricted T-cell-mediated reactivity against MHC class I binding Mycobacterium tuberculosis peptides.
    Wang M; Tang ST; Stryhn A; Justesen S; Larsen MV; Dziegiel MH; Lewinsohn DM; Buus S; Lund O; Claesson MH
    Immunology; 2011 Apr; 132(4):482-91. PubMed ID: 21294723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide interactions with class I and II MHC encoded molecules.
    Pecht I
    Isr J Med Sci; 1994 Mar; 30(3):28-31. PubMed ID: 7514162
    [No Abstract]   [Full Text] [Related]  

  • 8. Binding of single substituted promiscuous and designer peptides to purified DRB1*0101.
    Macklin KD; Conti-Fine BM
    Biochem Biophys Res Commun; 1998 Jan; 242(2):322-6. PubMed ID: 9446793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MHC class II-associated invariant chain peptide replacement by T cell epitopes: engineered invariant chain as a vehicle for directed and enhanced MHC class II antigen processing and presentation.
    Malcherek G; Wirblich C; Willcox N; Rammensee HG; Trowsdale J; Melms A
    Eur J Immunol; 1998 May; 28(5):1524-33. PubMed ID: 9603457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coreceptor affinity for MHC defines peptide specificity requirements for TCR interaction with coagonist peptide-MHC.
    Hoerter JA; Brzostek J; Artyomov MN; Abel SM; Casas J; Rybakin V; Ampudia J; Lotz C; Connolly JM; Chakraborty AK; Gould KG; Gascoigne NR
    J Exp Med; 2013 Aug; 210(9):1807-21. PubMed ID: 23940257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes.
    Zhao W; Sher X
    PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T cell responses to bluetongue virus are directed against multiple and identical CD4+ and CD8+ T cell epitopes from the VP7 core protein in mouse and sheep.
    Rojas JM; Rodríguez-Calvo T; Peña L; Sevilla N
    Vaccine; 2011 Sep; 29(40):6848-57. PubMed ID: 21807057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural processing sites for human cathepsin E and cathepsin D in tetanus toxin: implications for T cell epitope generation.
    Hewitt EW; Treumann A; Morrice N; Tatnell PJ; Kay J; Watts C
    J Immunol; 1997 Nov; 159(10):4693-9. PubMed ID: 9366392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human T-lymphotropic virus type 1 peptides in chimeric and multivalent constructs with promiscuous T-cell epitopes enhance immunogenicity and overcome genetic restriction.
    Lairmore MD; DiGeorge AM; Conrad SF; Trevino AV; Lal RB; Kaumaya PT
    J Virol; 1995 Oct; 69(10):6077-89. PubMed ID: 7545241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterns of predicted T-cell epitopes associated with antigenic drift in influenza H3N2 hemagglutinin.
    Homan EJ; Bremel RD
    PLoS One; 2011; 6(10):e26711. PubMed ID: 22039539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MHC-binding peptides as immunotherapeutics for cancer.
    Kobayashi H; Kennedy R; Lu J; Davila E; Celis E
    Immunol Invest; 2000 May; 29(2):105-10. PubMed ID: 10854176
    [No Abstract]   [Full Text] [Related]  

  • 18. Distribution of tripeptides in MHC binding peptides.
    Anishettt S; Pennathur G
    Protein Pept Lett; 2007; 14(6):552-6. PubMed ID: 17627595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide binding to MHC class I and II proteins: new avenues from new methods.
    Yaneva R; Schneeweiss C; Zacharias M; Springer S
    Mol Immunol; 2010 Jan; 47(4):649-57. PubMed ID: 19910050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide vaccines incorporating a 'promiscuous' T-cell epitope bypass certain haplotype restricted immune responses and provide broad spectrum immunogenicity.
    Kaumaya PT; Kobs-Conrad S; Seo YH; Lee H; VanBuskirk AM; Feng N; Sheridan JF; Stevens V
    J Mol Recognit; 1993 Jun; 6(2):81-94. PubMed ID: 7508238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.