BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 23923020)

  • 1. Nowhere to invade: Rumex crispus and Typha latifolia projected to disappear under future climate scenarios.
    Xu Z; Feng Z; Yang J; Zheng J; Zhang F
    PLoS One; 2013; 8(7):e70728. PubMed ID: 23923020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing potential risk of a global aquatic invader in Europe in contrast to other continents under future climate change.
    Liu X; Guo Z; Ke Z; Wang S; Li Y
    PLoS One; 2011 Mar; 6(3):e18429. PubMed ID: 21479188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Predictions of potential geographical distribution of Alhagi sparsifolia under climate change].
    Yang X; Zheng JH; Mu C; Lin J
    Zhongguo Zhong Yao Za Zhi; 2017 Feb; 42(3):450-455. PubMed ID: 28952248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Potential suitable habitats of
    Cun DJ; Wang Q; Yao XY; Ma B; Zhang Y; Li LH
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2021 Aug; 33(4):359-364. PubMed ID: 34505442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global decline in suitable habitat for Angiostrongylus ( = Parastrongylus) cantonensis: the role of climate change.
    York EM; Butler CJ; Lord WD
    PLoS One; 2014; 9(8):e103831. PubMed ID: 25122457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing distributions of two invasive species of contrasting habits in future climate.
    Panda RM; Behera MD; Roy PS
    J Environ Manage; 2018 May; 213():478-488. PubMed ID: 29290475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fire suppression and land-use strategies drive future dynamics of an invasive plant in a fire-prone mountain area under climate change.
    Lima CG; Campos JC; Regos A; Honrado JP; Fernandes PM; Freitas TR; Santos JA; Vicente JR
    J Environ Manage; 2024 May; 359():120997. PubMed ID: 38692031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Distribution and suitable habitats of ticks in the Yangtze River Delta urban agglomeration].
    Li ZQ; Li LH; Yin HJ; Wei ZX; Guo YH; Ma B; Zhang Y
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2021 Aug; 33(4):365-372. PubMed ID: 34505443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the effect of climate change on the distribution of threatened medicinal orchid Satyrium nepalense D. Don in India.
    Kumar D; Rawat S
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72431-72444. PubMed ID: 35524848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the current and future distribution potential areas of Peperomia abyssinica Miq., and Helichrysum citrispinum Steud. ex A. Rich. in Ethiopia.
    Daba D; Kagnew B; Tefera B; Nemomissa S
    BMC Ecol Evol; 2023 Dec; 23(1):71. PubMed ID: 38057726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential distribution of three invasive agricultural pests in China under climate change.
    Zhang Y; Wan Y; Wang C; Chen J; Si Q; Ma F
    Sci Rep; 2024 Jun; 14(1):13672. PubMed ID: 38871779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential Distributions of the Invasive Barnacle Scale Ceroplastes cirripediformis (Hemiptera: Coccidae) Under Climate Change and Implications for Its Management.
    Wang F; Wang D; Guo G; Zhang M; Lang J; Wei J
    J Econ Entomol; 2021 Feb; 114(1):82-89. PubMed ID: 33184624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate change influences on the potential distribution of Dianthus polylepis Bien. ex Boiss. (Caryophyllaceae), an endemic species in the Irano-Turanian region.
    Behroozian M; Ejtehadi H; Peterson AT; Memariani F; Mesdaghi M
    PLoS One; 2020; 15(8):e0237527. PubMed ID: 32810170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.
    Casajus N; Périé C; Logan T; Lambert MC; de Blois S; Berteaux D
    PLoS One; 2016; 11(3):e0152495. PubMed ID: 27015274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrasted demographic responses facing future climate change in Southern Ocean seabirds.
    Barbraud C; Rivalan P; Inchausti P; Nevoux M; Rolland V; Weimerskirch H
    J Anim Ecol; 2011 Jan; 80(1):89-100. PubMed ID: 20840607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increase in quantity and quality of suitable areas for invasive species as climate changes.
    Bertelsmeier C; Luque GM; Courchamp F
    Conserv Biol; 2013 Dec; 27(6):1458-67. PubMed ID: 23869583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Prediction of potential distribution of the invasive species Procambarus clarkii in China based on ecological niche models].
    Xiao Q; Zhang MT; Wu Y; Ding H; Lei JC; Zhu SL; Zhang ZH; Chen L
    Ying Yong Sheng Tai Xue Bao; 2020 Jan; 31(1):309-318. PubMed ID: 31957409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Geographic Assessment of the Global Scope for Rewilding with Wild-Living Horses (Equus ferus).
    Naundrup PJ; Svenning JC
    PLoS One; 2015; 10(7):e0132359. PubMed ID: 26177104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictions of potential geographical distribution and quality of
    Guo Y; Wei H; Lu C; Gao B; Gu W
    PeerJ; 2016; 4():e2554. PubMed ID: 27781160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Projection of potential geographic distribution of Apocynum venetum under climate change in northern China].
    Yang HF; Zheng JH; Jia XG; Li XJ
    Zhongguo Zhong Yao Za Zhi; 2017 Mar; 42(6):1118-1124. PubMed ID: 29027426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.