These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 23923546)
41. Pseudomonas-induced defence molecules in rice plants against leaffolder (Cnaphalocrocis medinalis) pest. Saravanakumar D; Muthumeena K; Lavanya N; Suresh S; Rajendran L; Raguchander T; Samiyappan R Pest Manag Sci; 2007 Jul; 63(7):714-21. PubMed ID: 17487829 [TBL] [Abstract][Full Text] [Related]
42. Exploring genetic divergence and marker-trait associations for leaffolder Nayak AK; Golive P; Sasmal A; Devanna BN; Anilkumar C; Mukherjee AK; Dash SS; Das Mohapatra S; Subudhi H 3 Biotech; 2024 Mar; 14(3):90. PubMed ID: 38414829 [TBL] [Abstract][Full Text] [Related]
43. A chromosome-level genome assembly of rice leaffolder, Cnaphalocrocis medinalis. Zhao X; Xu H; He K; Shi Z; Chen X; Ye X; Mei Y; Yang Y; Li M; Gao L; Xu L; Xiao H; Liu Y; Lu Z; Li F Mol Ecol Resour; 2021 Feb; 21(2):561-572. PubMed ID: 33051980 [TBL] [Abstract][Full Text] [Related]
44. Phenotyping and Genotype × Environment Interaction of Resistance to Leaffolder, Chintalapati P; Balakrishnan D; Venu Gopal Nammi TV; Javvaji S; Muthusamy SK; Lella Venkata SR; Neelamraju S; Katti G Front Plant Sci; 2019; 10():49. PubMed ID: 30833948 [TBL] [Abstract][Full Text] [Related]
45. Development and characterization of microsatellite markers for rice leaffolder, Cnaphalocrocis medinalis (Guenée) and cross-species amplification in other Pyralididae. An B; Deng X; Shi H; Ding M; Lan J; Yang J; Li Y Mol Biol Rep; 2014 Feb; 41(2):1151-6. PubMed ID: 24381106 [TBL] [Abstract][Full Text] [Related]
46. Resistance of cultivated rice varieties to Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Xu J; Wang QX; Wu JC J Econ Entomol; 2010 Aug; 103(4):1166-71. PubMed ID: 20857724 [TBL] [Abstract][Full Text] [Related]
47. Inheritance studies of SSR and ISSR molecular markers and phylogenetic relationship of rice genotypes resistant to tungro virus. Latif MA; Rahman MM; Ali ME; Ashkani S; Rafii MY C R Biol; 2013 Mar; 336(3):125-33. PubMed ID: 23643394 [TBL] [Abstract][Full Text] [Related]
48. Effects of nitrogen fertilizer and magnesium manipulation on the Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Ge LQ; Wan DJ; Xu J; Jiang LB; Wu JC J Econ Entomol; 2013 Feb; 106(1):196-205. PubMed ID: 23448032 [TBL] [Abstract][Full Text] [Related]
49. Effects of Host Plant and Insect Generation on Shaping of the Gut Microbiota in the Rice Leaffolder, Yang Y; Liu X; Xu H; Liu Y; Lu Z Front Microbiol; 2022; 13():824224. PubMed ID: 35479615 [TBL] [Abstract][Full Text] [Related]
50. Exogenous Copper Application for the Elemental Defense of Rice Plants against Rice Leaffolder ( Cheah BH; Chuang WP; Lo JC; Li Y; Cheng CY; Yang ZW; Liao CT; Lin YF Plants (Basel); 2022 Apr; 11(9):. PubMed ID: 35567105 [TBL] [Abstract][Full Text] [Related]
51. Silicon-mediated resistance in a susceptible rice variety to the rice leaf folder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae). Han Y; Lei W; Wen L; Hou M PLoS One; 2015; 10(3):e0120557. PubMed ID: 25837635 [TBL] [Abstract][Full Text] [Related]
52. The Role of Plant Abiotic Factors on the Interactions Between Cnaphalocrocis medinalis (Lepidoptera: Crambidae) and its Host Plant. Tu KY; Tsai SF; Guo TW; Lin HH; Yang ZW; Liao CT; Chuang WP Environ Entomol; 2018 Aug; 47(4):857-866. PubMed ID: 29762698 [TBL] [Abstract][Full Text] [Related]
53. Antagonistic Bacillus spp. reduce blast incidence on rice and increase grain yield under field conditions. Rais A; Shakeel M; Malik K; Hafeez FY; Yasmin H; Mumtaz S; Hassan MN Microbiol Res; 2018 Mar; 208():54-62. PubMed ID: 29551212 [TBL] [Abstract][Full Text] [Related]
54. Impact of Day Intervals on Sequential Infestations of the Rice Leaffolder Jiang LB; Cheng J; Zhu ZF; Ge LQ; Yang GQ; Wu JC Int J Insect Sci; 2014; 6():. PubMed ID: 35241961 [TBL] [Abstract][Full Text] [Related]
55. Transcriptomic and Metabolomic Responses of Rice Plants to Wang Y; Liu Q; Du L; Hallerman EM; Li Y Insects; 2020 Oct; 11(10):. PubMed ID: 33076419 [TBL] [Abstract][Full Text] [Related]
56. Phosphate-modified cellulose/chitosan with high drug loading for effective prevention of rice leaffolder (Cnaphalocrocis medinalis) outbreaks in fields. Liu Y; Jiang F; Zhang Y; Xu C; Fu L; Lin B Int J Biol Macromol; 2023 Jul; 243():125145. PubMed ID: 37268070 [TBL] [Abstract][Full Text] [Related]
57. Gas chromatography mass spectrometry based metabolic profiling reveals biomarkers involved in rice-gall midge interactions. Agarrwal R; Bentur JS; Nair S J Integr Plant Biol; 2014 Sep; 56(9):837-48. PubMed ID: 25059749 [TBL] [Abstract][Full Text] [Related]
58. Identification and characterization of ABC proteins in an important rice insect pest, Cnaphalocrocis medinalis unveil their response to Cry1C toxin. Yang Y; Lu K; Qian J; Guo J; Xu H; Lu Z Int J Biol Macromol; 2023 May; 237():123949. PubMed ID: 36894061 [TBL] [Abstract][Full Text] [Related]
59. Deficiency in Silicon Transporter Lsi1 Compromises Inducibility of Anti-herbivore Defense in Rice Plants. Lin Y; Sun Z; Li Z; Xue R; Cui W; Sun S; Liu T; Zeng R; Song Y Front Plant Sci; 2019; 10():652. PubMed ID: 31178878 [TBL] [Abstract][Full Text] [Related]
60. Phenylalanine ammonia-lyase and cell wall peroxidase are cooperatively involved in the extensive formation of ferulate network in cell walls of developing rice shoots. Wakabayashi K; Soga K; Hoson T J Plant Physiol; 2012 Feb; 169(3):262-7. PubMed ID: 22118877 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]