These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23923693)

  • 1. Mechanical efficiency of walking with spring-loaded axillary crutches.
    Zhang Y; Beaven M; Liu G; Xie S
    Assist Technol; 2013; 25(2):111-6. PubMed ID: 23923693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical evaluation of an innovative spring-loaded axillary crutch design.
    Zhang Y; Liu G; Xie S; Liger A
    Assist Technol; 2011; 23(4):225-31. PubMed ID: 22256671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanics of ambulation with standard and spring-loaded crutches.
    Segura A; Piazza SJ
    Arch Phys Med Rehabil; 2007 Sep; 88(9):1159-63. PubMed ID: 17826462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic energy expenditure during spring-loaded crutch ambulation.
    Seeley MK; Sandberg RP; Chacon JF; Funk MD; Nokes N; Mack GW
    J Sport Rehabil; 2011 Nov; 20(4):419-27. PubMed ID: 22012496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The energy expenditure of non-weight bearing crutch walking on the level and ascending stairs.
    Moran J; Murphy A; Murphy D; Austin A; Moran D; Cronin C; Guinan E; Hussey J
    Gait Posture; 2015 Jun; 42(1):23-6. PubMed ID: 25891530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic cost, mechanical work, and efficiency during normal walking in obese and normal-weight children.
    Huang L; Chen P; Zhuang J; Walt S
    Res Q Exerc Sport; 2013 Dec; 84 Suppl 2():S72-9. PubMed ID: 24527569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A kinematic comparison of spring-loaded and traditional crutches.
    Seeley MK; Hunter I; Bateman T; Roggia A; Larson BJ; Draper DO
    J Sport Rehabil; 2011 May; 20(2):198-206. PubMed ID: 21576711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new upper extremity sparing non-weight bearing orthosis.
    Yilmaz C; Dal U; Erdoğan AT; Colak M
    Gait Posture; 2010 Oct; 32(4):661-3. PubMed ID: 20813531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy expenditure of ambulation using the Sure-Gait crutch and the standard axillary crutch.
    Annesley AL; Almada-Norfleet M; Arnall DA; Cornwall MW
    Phys Ther; 1990 Jan; 70(1):18-23. PubMed ID: 2294527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of spring-loaded crutches via boundary value problem.
    Liu G; ShaneXie SQ; Zhang Y
    IEEE Trans Neural Syst Rehabil Eng; 2011 Feb; 19(1):64-70. PubMed ID: 20519159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy expenditure during ambulation with ortho crutches and axillary crutches.
    Hinton CA; Cullen KE
    Phys Ther; 1982 Jun; 62(6):813-9. PubMed ID: 7079293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy cost, exercise intensity, and gait efficiency of standard versus rocker-bottom axillary crutch walking.
    Nielsen DH; Harris JM; Minton YM; Motley NS; Rowley JL; Wadsworth CT
    Phys Ther; 1990 Aug; 70(8):487-93. PubMed ID: 2374777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy efficiency of ambulation-A comparison of various orthopaedic possibilities.
    Mathew J; Raja K; Baby FP; Barikkal B
    J Bodyw Mov Ther; 2018 Jul; 22(3):622-626. PubMed ID: 30100287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crutch length: effect on energy cost and activity intensity in non-weight-bearing ambulation.
    Mullis R; Dent RM
    Arch Phys Med Rehabil; 2000 May; 81(5):569-72. PubMed ID: 10807093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of energy expenditure and perceived exertion between standard axillary crutches, knee scooters, and a hands-free crutch.
    Canter DJ; Canter DJ; Reidy PT; Finucan TP; Timmerman KL
    PM R; 2024 Jun; 16(6):543-552. PubMed ID: 37950663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of a Shock Absorber on Spatiotemporal Parameters and Ground Reaction Forces of Forearm Crutch Ambulation.
    Dooley A; Ma Y; Zhang Y
    Assist Technol; 2015; 27(4):257-62. PubMed ID: 26151882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of energy cost in transtibial amputees using "prosthesis" and "crutches without prosthesis" for walking activities.
    Mohanty RK; Lenka P; Equebal A; Kumar R
    Ann Phys Rehabil Med; 2012 May; 55(4):252-62. PubMed ID: 22534430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of shoulder joint forces during ambulation with crutches versus a walker in persons with incomplete spinal cord injury.
    Haubert LL; Gutierrez DD; Newsam CJ; Gronley JK; Mulroy SJ; Perry J
    Arch Phys Med Rehabil; 2006 Jan; 87(1):63-70. PubMed ID: 16401440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic evaluation of the criteria used to fit elbow crutches by measurement of oxygen consumption.
    Smith TR; Enright S
    Arch Phys Med Rehabil; 1996 Jan; 77(1):70-4. PubMed ID: 8554478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanical performance of ambulation using spring-loaded axillary crutches. A preliminary report.
    Parziale JR; Daniels JD
    Am J Phys Med Rehabil; 1989 Aug; 68(4):192-5. PubMed ID: 2765212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.