These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 23923913)

  • 1. Multiscale modelling of the mechanical behaviour of human humerus under impact.
    Vandenbulcke F; Rahmoun J; Naceur H; Morvan H; Drazetic P; Fontaine C
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():211-3. PubMed ID: 23923913
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanical impedance and impact response of the human cadaver zygoma.
    Hodgson VR; Nakamura SM; Nakamura GS
    J Biomech; 1968 Jul; 1(2):73-8. PubMed ID: 16329294
    [No Abstract]   [Full Text] [Related]  

  • 3. Mechanical characterization of fourth generation composite humerus.
    Grover P; Albert C; Wang M; Harris GF
    Proc Inst Mech Eng H; 2011 Dec; 225(12):1169-76. PubMed ID: 22320056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteosynthesis of supracondylar humerus fractures in children: a biomechanical comparison of four techniques.
    Weinberg AM; Castellani C; Arzdorf M; Schneider E; Gasser B; Linke B
    Clin Biomech (Bristol, Avon); 2007 Jun; 22(5):502-9. PubMed ID: 17270329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental protocol to characterise damage of appendicular bone.
    Delille R; Bennani B; Lesueur D; Drazetic P; Fontaine C; Morvan H
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():284-6. PubMed ID: 23923944
    [No Abstract]   [Full Text] [Related]  

  • 6. Morphological effects of mechanical forces on the human humerus.
    Qu X
    Br J Sports Med; 1992 Mar; 26(1):51-3. PubMed ID: 1600456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apparent measurement errors in "Development of biomechanical response corridors of the thorax to blunt ballistic impacts".
    Courtney M; Courtney A
    J Biomech; 2008; 41(2):486; author reply 486-7. PubMed ID: 17964579
    [No Abstract]   [Full Text] [Related]  

  • 8. Impact loading of articular cartilage.
    Aspden RM; Jeffrey JE; Burgin LV
    Osteoarthritis Cartilage; 2002 Jul; 10(7):588-9; author reply 590. PubMed ID: 12127840
    [No Abstract]   [Full Text] [Related]  

  • 9. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion.
    Varghese B; Short D; Penmetsa R; Goswami T; Hangartner T
    J Biomech; 2011 Apr; 44(7):1374-9. PubMed ID: 21288523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in mechanical behaviour of articular cartilage due to changes in depth varying material properties--a nonhomogeneous poroelastic model study.
    Li LP; Shirazi-Adl A; Buschmann MD
    Comput Methods Biomech Biomed Engin; 2002 Feb; 5(1):45-52. PubMed ID: 12186733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method to assess the deformations of internal organs of the abdomen during impact.
    Beillas P; Helfenstein C; Rongieras F; Gennisson JL; Tanter M
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():202-3. PubMed ID: 23923909
    [No Abstract]   [Full Text] [Related]  

  • 12. In vitro characterisation of the biomechanical properties of the subchondral mineralised zone of lumbosacral facet joints.
    Berteau JP; Nover L; Mielke G; Ivicsics M; Morlock MM; Huber G
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():226-7. PubMed ID: 23923919
    [No Abstract]   [Full Text] [Related]  

  • 13. Rupture pressure of the healthy human eye.
    Bullock JD; Warwar RE
    Arch Ophthalmol; 2010 Mar; 128(3):388. PubMed ID: 20212220
    [No Abstract]   [Full Text] [Related]  

  • 14. The effect of shoulder arthroplasty on humeral strength: an in vitro biomechanical investigation.
    Choo AM; Hawkins RH; Kwon BK; Oxland TR
    Clin Biomech (Bristol, Avon); 2005 Dec; 20(10):1064-71. PubMed ID: 16122858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of the human brachial plexus.
    ZapaƂowicz K; Radek A
    Neurol Neurochir Pol; 2000; 34(6 Suppl):89-93. PubMed ID: 11452861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subject-specific finite element modelling of canine long bones up to fracture.
    Laurent C; Bohme B; d'Otreppe V; Balligand M; Ponthot JP
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():270-1. PubMed ID: 23923938
    [No Abstract]   [Full Text] [Related]  

  • 17. Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics.
    Bey MJ; Zauel R; Brock SK; Tashman S
    J Biomech Eng; 2006 Aug; 128(4):604-9. PubMed ID: 16813452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural properties of a novel design of composite analogue humeri models.
    Dunlap JT; Chong AC; Lucas GL; Cooke FW
    Ann Biomed Eng; 2008 Nov; 36(11):1922-6. PubMed ID: 18797993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of trabecular microstructure and cortical index on the complexity of proximal humeral fractures.
    Osterhoff G; Diederichs G; Tami A; Theopold J; Josten C; Hepp P
    Arch Orthop Trauma Surg; 2012 Apr; 132(4):509-15. PubMed ID: 22200902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propagation of surface fatigue cracks in human cortical bone.
    Kruzic JJ; Scott JA; Nalla RK; Ritchie RO
    J Biomech; 2006; 39(5):968-72. PubMed ID: 15907859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.