These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23924078)

  • 21. Tailoring carrier injection efficiency to improve the carrier balance of solid-state light-emitting electrochemical cells.
    Liao CT; Chen HF; Su HC; Wong KT
    Phys Chem Chem Phys; 2012 Jul; 14(27):9774-84. PubMed ID: 22684499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light-Emitting Electrochemical Cells: A Review on Recent Progress.
    Tang S; Edman L
    Top Curr Chem (Cham); 2016 Aug; 374(4):40. PubMed ID: 27573392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scanning Kelvin probe imaging of the potential profiles in fixed and dynamic planar LECs.
    Pingree LS; Rodovsky DB; Coffey DC; Bartholomew GP; Ginger DS
    J Am Chem Soc; 2007 Dec; 129(51):15903-10. PubMed ID: 18052165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Incorporating a hole-transport material into the emissive layer of solid-state light-emitting electrochemical cells to improve device performance.
    Huang PC; Krucaite G; Su HC; Grigalevicius S
    Phys Chem Chem Phys; 2015 Jul; 17(26):17253-9. PubMed ID: 26074493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices.
    Matyba P; Yamaguchi H; Eda G; Chhowalla M; Edman L; Robinson ND
    ACS Nano; 2010 Feb; 4(2):637-42. PubMed ID: 20131906
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering charge injection interfaces in hybrid light-emitting electrochemical cells.
    Roldán-Carmona C; Akatsuka T; Sessolo M; Watkins SE; Bolink HJ
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19520-4. PubMed ID: 25372865
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visualizing electroluminescence process in light-emitting electrochemical cells.
    Yasuji K; Sakanoue T; Yonekawa F; Kanemoto K
    Nat Commun; 2023 Mar; 14(1):992. PubMed ID: 36859421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Challenging Conventional Wisdom: Finding High-Performance Electrodes for Light-Emitting Electrochemical Cells.
    Xu J; Sandström A; Lindh EM; Yang W; Tang S; Edman L
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33380-33389. PubMed ID: 30199215
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inkjet printed bilayer light-emitting electrochemical cells for display and lighting applications.
    Lindh EM; Sandström A; Edman L
    Small; 2014 Oct; 10(20):4148-53. PubMed ID: 25070524
    [TBL] [Abstract][Full Text] [Related]  

  • 30. White light from a single-emitter light-emitting electrochemical cell.
    Tang S; Pan J; Buchholz HA; Edman L
    J Am Chem Soc; 2013 Mar; 135(9):3647-52. PubMed ID: 23398145
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unique device operations by combining optical-memory effect and electrical-gate modulation in a photochromism-based dual-gate transistor.
    Ishiguro Y; Hayakawa R; Yasuda T; Chikyow T; Wakayama Y
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9726-31. PubMed ID: 24040885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Workfunction-tunable, N-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes.
    Hwang JO; Park JS; Choi DS; Kim JY; Lee SH; Lee KE; Kim YH; Song MH; Yoo S; Kim SO
    ACS Nano; 2012 Jan; 6(1):159-67. PubMed ID: 22148918
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving the carrier balance of light-emitting electrochemical cells based on ionic transition metal complexes.
    Su HC; Hsu JH
    Dalton Trans; 2015 May; 44(18):8330-45. PubMed ID: 25407946
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Separating ion and electron transport: the bilayer light-emitting electrochemical cell.
    Sandström A; Matyba P; Inganäs O; Edman L
    J Am Chem Soc; 2010 May; 132(19):6646-7. PubMed ID: 20420393
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-doped solid-state white light-emitting electrochemical cells employing the microcavity effect.
    Lin GR; Chen HF; Shih HC; Hsu JH; Chang Y; Chiu CH; Cheng CY; Yeh YS; Su HC; Wong KT
    Phys Chem Chem Phys; 2015 Mar; 17(10):6956-62. PubMed ID: 25679194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic Bipolar Electrode Array for Visualized Screening of Electrode Materials in Light-Emitting Electrochemical Cells.
    Hu S; Gao J
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1117-1124. PubMed ID: 30507115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemical and optical characterization of p- and n-doped poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene].
    Holt AL; Leger JM; Carter SA
    J Chem Phys; 2005 Jul; 123(4):044704. PubMed ID: 16095381
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Small-molecule light-emitting electrochemical cells: evidence for in situ electrochemical doping and functional operation.
    Tang S; Tan WY; Zhu XH; Edman L
    Chem Commun (Camb); 2013 May; 49(43):4926-8. PubMed ID: 23603898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The dynamic organic p-n junction.
    Matyba P; Maturova K; Kemerink M; Robinson ND; Edman L
    Nat Mater; 2009 Aug; 8(8):672-6. PubMed ID: 19543278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Defining the light emitting area for displays in the unipolar regime of highly efficient light emitting transistors.
    Ullah M; Armin A; Tandy K; Yambem SD; Burn PL; Meredith P; Namdas EB
    Sci Rep; 2015 Mar; 5():8818. PubMed ID: 25743444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.