BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 23924161)

  • 1. A genetically encoded fluorescent probe in mammalian cells.
    Chatterjee A; Guo J; Lee HS; Schultz PG
    J Am Chem Soc; 2013 Aug; 135(34):12540-3. PubMed ID: 23924161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic incorporation of a small, environmentally sensitive, fluorescent probe into proteins in Saccharomyces cerevisiae.
    Lee HS; Guo J; Lemke EA; Dimla RD; Schultz PG
    J Am Chem Soc; 2009 Sep; 131(36):12921-3. PubMed ID: 19702307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Simplified Protocol to Incorporate the Fluorescent Unnatural Amino Acid ANAP into Xenopus laevis Oocyte-Expressed P2X7 Receptors.
    Durner A; Nicke A
    Methods Mol Biol; 2022; 2510():193-216. PubMed ID: 35776326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A genetically encoded cyclobutene probe for labelling of live cells.
    Liu K; Enns B; Evans B; Wang N; Shang X; Sittiwong W; Dussault PH; Guo J
    Chem Commun (Camb); 2017 Sep; 53(76):10604-10607. PubMed ID: 28902227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A genetically encoded fluorescent amino acid.
    Summerer D; Chen S; Wu N; Deiters A; Chin JW; Schultz PG
    Proc Natl Acad Sci U S A; 2006 Jun; 103(26):9785-9. PubMed ID: 16785423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantiospecific synthesis of genetically encodable fluorescent unnatural amino acid L-3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid.
    Xiang Z; Wang L
    J Org Chem; 2011 Aug; 76(15):6367-71. PubMed ID: 21732687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring protein misfolding by site-specific labeling of proteins in vivo.
    Hsieh TY; Nillegoda NB; Tyedmers J; Bukau B; Mogk A; Kramer G
    PLoS One; 2014; 9(6):e99395. PubMed ID: 24915041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transforming a pair of orthogonal tRNA-aminoacyl-tRNA synthetase from Archaea to function in mammalian cells.
    Thibodeaux GN; Liang X; Moncivais K; Umeda A; Singer O; Alfonta L; Zhang ZJ
    PLoS One; 2010 Jun; 5(6):e11263. PubMed ID: 20582317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts.
    Wang L
    Acc Chem Res; 2017 Nov; 50(11):2767-2775. PubMed ID: 28984438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aminoacyl-tRNA Synthetases and tRNAs for an Expanded Genetic Code: What Makes them Orthogonal?
    Melnikov SV; Söll D
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31010123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methanomethylophilus alvus Mx1201 Provides Basis for Mutual Orthogonal Pyrrolysyl tRNA/Aminoacyl-tRNA Synthetase Pairs in Mammalian Cells.
    Meineke B; Heimgärtner J; Lafranchi L; Elsässer SJ
    ACS Chem Biol; 2018 Nov; 13(11):3087-3096. PubMed ID: 30260624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A chemical toolkit for proteins--an expanded genetic code.
    Xie J; Schultz PG
    Nat Rev Mol Cell Biol; 2006 Oct; 7(10):775-82. PubMed ID: 16926858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. tRNA
    Tharp JM; Ehnbom A; Liu WR
    RNA Biol; 2018; 15(4-5):441-452. PubMed ID: 28837402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A general approach for the generation of orthogonal tRNAs.
    Wang L; Schultz PG
    Chem Biol; 2001 Sep; 8(9):883-90. PubMed ID: 11564556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity.
    Young DD; Young TS; Jahnz M; Ahmad I; Spraggon G; Schultz PG
    Biochemistry; 2011 Mar; 50(11):1894-900. PubMed ID: 21280675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Labeling proteins on live mammalian cells using click chemistry.
    Nikić I; Kang JH; Girona GE; Aramburu IV; Lemke EA
    Nat Protoc; 2015 May; 10(5):780-91. PubMed ID: 25906116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome.
    Neumann H; Wang K; Davis L; Garcia-Alai M; Chin JW
    Nature; 2010 Mar; 464(7287):441-4. PubMed ID: 20154731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small-molecule control of protein function through Staudinger reduction.
    Luo J; Liu Q; Morihiro K; Deiters A
    Nat Chem; 2016 Nov; 8(11):1027-1034. PubMed ID: 27768095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A genetically encoded fluorescent amino acid.
    Wang J; Xie J; Schultz PG
    J Am Chem Soc; 2006 Jul; 128(27):8738-9. PubMed ID: 16819861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of an orthogonal aminoacyl-tRNA synthetase for efficient incorporation of the non-natural amino acid O-methyl-L-tyrosine using fluorescence-based bacterial cell sorting.
    Kuhn SM; Rubini M; Fuhrmann M; Theobald I; Skerra A
    J Mol Biol; 2010 Nov; 404(1):70-87. PubMed ID: 20837025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.