BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23924308)

  • 1. Seed-mediated growth of ultralong gold nanorods and nanowires with a wide range of length tunability.
    Wang YN; Wei WT; Yang CW; Huang MH
    Langmuir; 2013 Aug; 29(33):10491-7. PubMed ID: 23924308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophilic nanowire modified polymer ultrafiltration membranes with high water flux.
    Feng Y; Liu Q; Lin X; Liu JZ; Wang H
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19161-7. PubMed ID: 25307145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold-catalyzed low-temperature growth of cadmium oxide nanowires by vapor transport.
    Kuo TJ; Huang MH
    J Phys Chem B; 2006 Jul; 110(28):13717-21. PubMed ID: 16836315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The growth of ultralong and highly blue luminescent gallium oxide nanowires and nanobelts, and direct horizontal nanowire growth on substrates.
    Kuo CL; Huang MH
    Nanotechnology; 2008 Apr; 19(15):155604. PubMed ID: 21825618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical synthesis of gold nanowires in acidic solutions.
    Kim F; Sohn K; Wu J; Huang J
    J Am Chem Soc; 2008 Nov; 130(44):14442-3. PubMed ID: 18850710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CeO2 nanorods and gold nanocrystals supported on CeO2 nanorods as catalyst.
    Huang PX; Wu F; Zhu BL; Gao XP; Zhu HY; Yan TY; Huang WP; Wu SH; Song DY
    J Phys Chem B; 2005 Oct; 109(41):19169-74. PubMed ID: 16853472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Length-Controlled Synthesis of Calcium Phosphate Nanorod and Nanowire and Application in Intracellular Protein Delivery.
    Das P; Jana NR
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8710-20. PubMed ID: 26990373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity.
    Xia BY; Wu HB; Yan Y; Lou XW; Wang X
    J Am Chem Soc; 2013 Jun; 135(25):9480-5. PubMed ID: 23742152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size- and shape-dependent growth of fluorescent ZnS nanorods and nanowires using Ag nanocrystals as seeds.
    Shen H; Shang H; Niu J; Xu W; Wang H; Li LS
    Nanoscale; 2012 Oct; 4(20):6509-14. PubMed ID: 22965175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and optical properties of small Au nanorods using a seedless growth technique.
    Ali MR; Snyder B; El-Sayed MA
    Langmuir; 2012 Jun; 28(25):9807-15. PubMed ID: 22620850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-pot synthesis of gold nanorods via autocatalytic growth of sonochemically formed gold seeds: the effect of irradiation time on the formation of seeds and nanorods.
    Okitsu K; Nunota Y
    Ultrason Sonochem; 2014 Nov; 21(6):1928-32. PubMed ID: 24703822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seed-mediated synthesis of palladium nanorods and branched nanocrystals and their use as recyclable Suzuki coupling reaction catalysts.
    Chen YH; Hung HH; Huang MH
    J Am Chem Soc; 2009 Jul; 131(25):9114-21. PubMed ID: 19507854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the Seed-Mediated Growth of Gold Nanorods through a Fractional Factorial Design of Experiments.
    Burrows ND; Harvey S; Idesis FA; Murphy CJ
    Langmuir; 2017 Feb; 33(8):1891-1907. PubMed ID: 27983861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the length and shape of gold nanorods.
    Chen HM; Peng HC; Liu RS; Asakura K; Lee CL; Lee JF; Hu SF
    J Phys Chem B; 2005 Oct; 109(42):19553-5. PubMed ID: 16853528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled growth of well-aligned ZnO nanorod array using a novel solution method.
    Tak Y; Yong K
    J Phys Chem B; 2005 Oct; 109(41):19263-9. PubMed ID: 16853488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and alignment of silver nanorods and nanowires and the formation of Pt, Pd, and core/shell structures by galvanic exchange directly on surfaces.
    Sławiński GW; Zamborini FP
    Langmuir; 2007 Sep; 23(20):10357-65. PubMed ID: 17760472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires.
    Tian JH; Hu J; Li SS; Zhang F; Liu J; Shi J; Li X; Tian ZQ; Chen Y
    Nanotechnology; 2011 Jun; 22(24):245601. PubMed ID: 21508463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoplasmonic Nanorods/Nanowires from Single to Assembly: Syntheses, Physical Mechanisms and Applications.
    Fan J; Sun M
    Chem Rec; 2020 Sep; 20(9):1043-1073. PubMed ID: 32779364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled synthesis of LaPO(4) and CePO(4) nanorods/nanowires.
    Cao M; Hu C; Wu Q; Guo C; Qi Y; Wang E
    Nanotechnology; 2005 Feb; 16(2):282-6. PubMed ID: 21727437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method.
    Qiu J; Li X; He W; Park SJ; Kim HK; Hwang YH; Lee JH; Kim YD
    Nanotechnology; 2009 Apr; 20(15):155603. PubMed ID: 19420551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.