BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 23924490)

  • 1. Thermodynamic profiles at the solvated inorganic-organic interface: the case of gold-thiolate monolayers.
    Ravi V; Binz JM; Rioux RM
    Nano Lett; 2013 Sep; 13(9):4442-8. PubMed ID: 23924490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic interactions of proteins with functionalized nanoparticles: a thermodynamic study.
    De M; You CC; Srivastava S; Rotello VM
    J Am Chem Soc; 2007 Sep; 129(35):10747-53. PubMed ID: 17672456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitive adsorption of thiolated poly(ethylene glycol) and alkane-thiols on gold nanoparticles and its effect on cluster formation.
    Larson-Smith K; Pozzo DC
    Langmuir; 2012 Sep; 28(37):13157-65. PubMed ID: 22924831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic analysis of r-hGH-polymer surface Interaction using isothermal titration calorimetry.
    Parikh V; Gupta P
    Growth Horm IGF Res; 2018; 42-43():86-93. PubMed ID: 30368133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excess thermodynamic properties of thin water films confined between hydrophobized gold surfaces.
    Wang J; Yoon RH; Eriksson JC
    J Colloid Interface Sci; 2011 Dec; 364(1):257-63. PubMed ID: 21903219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong resistance of citrate anions on metal nanoparticles to desorption under thiol functionalization.
    Park JW; Shumaker-Parry JS
    ACS Nano; 2015 Feb; 9(2):1665-82. PubMed ID: 25625548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics of solvophobic interaction between hydrophobic surfaces in ethanol.
    Li Z; Yoon RH
    Langmuir; 2014 Nov; 30(44):13312-20. PubMed ID: 25327810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a better understanding on agglomeration mechanisms and thermodynamic properties of TiO₂ nanoparticles interacting with natural organic matter.
    Loosli F; Vitorazi L; Berret JF; Stoll S
    Water Res; 2015 Sep; 80():139-48. PubMed ID: 26001280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relating structure, entropy, and energy of solvation of nanoscale solutes: application to gold nanoparticle dispersions.
    Nayar D; Yadav HO; Jabes BS; Chakravarty C
    J Phys Chem B; 2012 Nov; 116(43):13124-32. PubMed ID: 22998098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of changes in the interparticle separation induced by alkanethiols on the surface plasmon band and other properties of nanocrystalline gold films.
    Agrawal VV; Varghese N; Kulkarni GU; Rao CN
    Langmuir; 2008 Mar; 24(6):2494-500. PubMed ID: 18278959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of protein-ligand interactions: history, presence, and future aspects.
    Perozzo R; Folkers G; Scapozza L
    J Recept Signal Transduct Res; 2004 Feb; 24(1-2):1-52. PubMed ID: 15344878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the Role of Capping Molecules in Controlling Aggregative Growth of Gold Nanoparticles in Heated Solution.
    Cheng HW; Schadt MJ; Zhong CJ
    Chem Asian J; 2016 Jan; 11(1):120-7. PubMed ID: 26444313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface.
    Poddar NN; Amar JG
    J Chem Phys; 2014 Jun; 140(24):244702. PubMed ID: 24985663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From ligand-stabilized gold nanoparticles to hybrid organic-inorganic superstructures.
    Hermes JP; Sanders F; Peterle T; Mayor M
    Chimia (Aarau); 2011; 65(4):219-22. PubMed ID: 21678765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Close-packed monolayers of charged Janus-type nanoparticles at the air-water interface.
    Sashuk V; Hołyst R; Wojciechowski T; Fiałkowski M
    J Colloid Interface Sci; 2012 Jun; 375(1):180-6. PubMed ID: 22440729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed monolayers of alkane thiols with polar terminal group on gold: Investigation of structure dependent surface properties.
    Besharat Z; Wakeham D; Johnson CM; Luengo GS; Greaves A; Odnevall Wallinder I; Göthelid M; Rutland MW
    J Colloid Interface Sci; 2016 Dec; 484():279-290. PubMed ID: 27632073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density functional theory study of the adsorption of alkanethiols on Cu(111), Ag(111), and Au(111) in the low and high coverage regimes.
    Cometto FP; Paredes-Olivera P; Macagno VA; Patrito EM
    J Phys Chem B; 2005 Nov; 109(46):21737-48. PubMed ID: 16853824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of the hydrophobic effect. II. Calorimetric measurement of enthalpy, entropy, and heat capacity of aggregation of alkylamines and long aliphatic chains.
    Matulis D; Bloomfield VA
    Biophys Chem; 2001 Oct; 93(1):53-65. PubMed ID: 11604216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the effect of ligand shell heterogeneity on nanoparticle/protein binding thermodynamics.
    Bekdemir A; Liao S; Stellacci F
    Colloids Surf B Biointerfaces; 2019 Feb; 174():367-373. PubMed ID: 30472623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The energetics of HMG box interactions with DNA: thermodynamics of the DNA binding of the HMG box from mouse sox-5.
    Privalov PL; Jelesarov I; Read CM; Dragan AI; Crane-Robinson C
    J Mol Biol; 1999 Dec; 294(4):997-1013. PubMed ID: 10588902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.