These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 23924518)

  • 1. Biomechanical analysis of C4-C6 spine segment considering anisotropy of annulus fibrosus.
    Wang Y; Peng X; Guo Z
    Biomed Tech (Berl); 2013 Aug; 58(4):343-51. PubMed ID: 23924518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element modeling of the cervical spine: role of intervertebral disc under axial and eccentric loads.
    Kumaresan S; Yoganandan N; Pintar FA; Maiman DJ
    Med Eng Phys; 1999 Dec; 21(10):689-700. PubMed ID: 10717549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subject-specific multi-validation of a finite element model of ovine cervical functional spinal units.
    Mengoni M; Vasiljeva K; Jones AC; Tarsuslugil SM; Wilcox RK
    J Biomech; 2016 Jan; 49(2):259-66. PubMed ID: 26708919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relevance of using a compressive preload in the cervical spine: an experimental and numerical simulating investigation.
    Barrey C; Rousseau MA; Persohn S; Campana S; Perrin G; Skalli W
    Eur J Orthop Surg Traumatol; 2015 Jul; 25 Suppl 1():S155-65. PubMed ID: 25845316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development, validation, and application of ligamentous cervical spinal segment C6-C7 of a six-year-old child and an adult.
    Li Z; Song G; Su Z; Wang G
    Comput Methods Programs Biomed; 2020 Jan; 183():105080. PubMed ID: 31525549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An accurate finite element model of the cervical spine under quasi-static loading.
    del Palomar AP; Calvo B; Doblaré M
    J Biomech; 2008; 41(3):523-31. PubMed ID: 18061196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs.
    Jaramillo HE; Gómez L; García JJ
    Acta Bioeng Biomech; 2015; 17(2):15-24. PubMed ID: 26415632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effects of novel angled cervical disc replacement on facet joint stress].
    Bai C; Zhang W; Ling W; Tian Z; Dang X; Wang K
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Apr; 26(4):390-5. PubMed ID: 22568314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the role of ligaments, facets and disc nucleus in lower cervical spine under compression and sagittal moments using finite element method.
    Teo EC; Ng HW
    Med Eng Phys; 2001 Apr; 23(3):155-64. PubMed ID: 11410380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical testing simulation of a cadaver spine specimen: development and evaluation study.
    Ahn HS; DiAngelo DJ
    Spine (Phila Pa 1976); 2007 May; 32(11):E330-6. PubMed ID: 17495766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multibody modelling approach to determine load sharing between passive elements of the lumbar spine.
    Abouhossein A; Weisse B; Ferguson SJ
    Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):527-37. PubMed ID: 21128134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of load sharing among spinal components of a C5-C6 motion segment using the finite element approach.
    Goel VK; Clausen JD
    Spine (Phila Pa 1976); 1998 Mar; 23(6):684-91. PubMed ID: 9549790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of morphological variations on cervical spine segmental responses from inertial loading.
    John JD; Yoganandan N; Arun MWJ; Saravana Kumar G
    Traffic Inj Prev; 2018 Feb; 19(sup1):S29-S36. PubMed ID: 29584503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of an asymmetric finite element model of the C2-T1 cervical spine for evaluating the role of soft tissues in stability.
    Erbulut DU; Zafarparandeh I; Lazoglu I; Ozer AF
    Med Eng Phys; 2014 Jul; 36(7):915-21. PubMed ID: 24641811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical factorial analysis on the material property sensitivity of the mechanical responses of the C4-C6 under compression, anterior and posterior shear.
    Ng HW; Teo EC; Lee VS
    J Biomech; 2004 May; 37(5):771-7. PubMed ID: 15047007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear, anisotropic, and time-dependent.
    Jacobs NT; Cortes DH; Peloquin JM; Vresilovic EJ; Elliott DM
    J Biomech; 2014 Aug; 47(11):2540-6. PubMed ID: 24998992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osmoviscoelastic finite element model of the intervertebral disc.
    Schroeder Y; Wilson W; Huyghe JM; Baaijens FP
    Eur Spine J; 2006 Aug; 15 Suppl 3(Suppl 3):S361-71. PubMed ID: 16724211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cervical spine morphology and ligament property variations: A finite element study of their influence on sagittal bending characteristics.
    John JD; Saravana Kumar G; Yoganandan N
    J Biomech; 2019 Mar; 85():18-26. PubMed ID: 30704760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of a C2-C7 cervical spine finite element model using specimen-specific flexibility data.
    Kallemeyn N; Gandhi A; Kode S; Shivanna K; Smucker J; Grosland N
    Med Eng Phys; 2010 Jun; 32(5):482-9. PubMed ID: 20392660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.