BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23924847)

  • 1. Controllable synthesis of silver and silver sulfide nanocrystals via selective cleavage of chemical bonds.
    Tang A; Wang Y; Ye H; Zhou C; Yang C; Li X; Peng H; Zhang F; Hou Y; Teng F
    Nanotechnology; 2013 Sep; 24(35):355602. PubMed ID: 23924847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape-controlled synthesis of PbS nanocrystals via a simple one-step process.
    Wang Y; Tang A; Li K; Yang C; Wang M; Ye H; Hou Y; Teng F
    Langmuir; 2012 Nov; 28(47):16436-43. PubMed ID: 23126602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chiral one- and two-dimensional silver(I)-biotin coordination polymers.
    Altaf M; Stoeckli-Evans H
    Acta Crystallogr C; 2013 Feb; 69(Pt 2):127-37. PubMed ID: 23377677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective degradation of chemical bonds: from single-source molecular precursors to metallic Ag and semiconducting Ag2S nanocrystals via instant thermal activation.
    Tang Q; Yoon SM; Yang HJ; Lee Y; Song HJ; Byon HR; Choi HC
    Langmuir; 2006 Mar; 22(6):2802-5. PubMed ID: 16519485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A facile "dispersion-decomposition" route to metal sulfide nanocrystals.
    Zhuang Z; Lu X; Peng Q; Li Y
    Chemistry; 2011 Sep; 17(37):10445-52. PubMed ID: 21915921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and assembly of monodisperse spherical Cu2S nanocrystals.
    Li S; Wang H; Xu W; Si H; Tao X; Lou S; Du Z; Li LS
    J Colloid Interface Sci; 2009 Feb; 330(2):483-7. PubMed ID: 19007936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple route to synthesize size-controlled Ag(2)S core-shell nanocrystals, and their self-assembly.
    Lou W; Wang X; Chen M; Liu W; Hao J
    Nanotechnology; 2008 Jun; 19(22):225607. PubMed ID: 21825767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 'One-step' controllable synthesis of Ag and Ag(2)S nanocrystals on a large scale.
    Tian C; Kang Z; Wang E; Mao B; Li S; Su Z; Xu L
    Nanotechnology; 2006 Nov; 17(22):5681-5. PubMed ID: 21727342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot synthesis and self-assembly of colloidal copper(I) sulfide nanocrystals.
    Tang A; Qu S; Li K; Hou Y; Teng F; Cao J; Wang Y; Wang Z
    Nanotechnology; 2010 Jul; 21(28):285602. PubMed ID: 20562487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-pot synthesis and optical property of copper(I) sulfide nanodisks.
    Wang Y; Hu Y; Zhang Q; Ge J; Lu Z; Hou Y; Yin Y
    Inorg Chem; 2010 Jul; 49(14):6601-8. PubMed ID: 20575563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile one-step synthesis and transformation of Cu(I)-doped zinc sulfide nanocrystals to Cu(1.94)S-ZnS heterostructured nanocrystals.
    Ye H; Tang A; Huang L; Wang Y; Yang C; Hou Y; Peng H; Zhang F; Teng F
    Langmuir; 2013 Jul; 29(27):8728-35. PubMed ID: 23767977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silver clusters on silver sulfide nanocrystals: synthesis and behavior after electron beam irradiation.
    Motte L; Urban J
    J Phys Chem B; 2005 Nov; 109(46):21499-501. PubMed ID: 16853791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple route to alloyed quaternary nanocrystals Ag-In-Zn-S with shape and size control.
    Gabka G; Bujak P; Giedyk K; Ostrowski A; Malinowska K; Herbich J; Golec B; Wielgus I; Pron A
    Inorg Chem; 2014 May; 53(10):5002-12. PubMed ID: 24786548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Luminescent Ag-In-Zn-S Quaternary Nanocrystals: Growth Mechanism and Surface Chemistry Elucidation.
    Bujak P; Wróbel Z; Penkala M; Kotwica K; Kmita A; Gajewska M; Ostrowski A; Kowalik P; Pron A
    Inorg Chem; 2019 Jan; 58(2):1358-1370. PubMed ID: 30607944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of reaction temperatures and media on crystal structure of colloidal nanocrystals synthesized from an aerosol flow system.
    Kim DJ; Jang HD; Kim EJ; Koo KK
    Ultramicroscopy; 2008 Sep; 108(10):1278-82. PubMed ID: 18554800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled synthesis and self-assembly of highly monodisperse Ag and Ag(2)S nanocrystals.
    Li P; Peng Q; Li Y
    Chemistry; 2011 Jan; 17(3):941-6. PubMed ID: 21226111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis.
    Liu H; Owen JS; Alivisatos AP
    J Am Chem Soc; 2007 Jan; 129(2):305-12. PubMed ID: 17212409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ X-ray diffraction study of the formation, growth, and phase transition of colloidal Cu(2-x)S nanocrystals.
    Nørby P; Johnsen S; Iversen BB
    ACS Nano; 2014 May; 8(5):4295-303. PubMed ID: 24717103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oleic acid assisted glycothermal synthesis of cuboidal Ba(0.6)Sr(0.4)TiO3 nanocrystals and their ordered architectures via self-assembly.
    Xiaowei Y; Yanwei Z; Leiqing M; Longxiang H
    J Colloid Interface Sci; 2011 May; 357(2):308-16. PubMed ID: 21388630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphine-free synthesis of Ag-In-Se alloy nanocrystals with visible emissions.
    Yao D; Liu H; Liu Y; Dong C; Zhang K; Sheng Y; Cui J; Zhang H; Yang B
    Nanoscale; 2015 Nov; 7(44):18570-8. PubMed ID: 26489872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.