These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23925048)

  • 21. Imaging molecular interactions by multiphoton FLIM.
    Peter M; Ameer-Beg SM
    Biol Cell; 2004 Apr; 96(3):231-6. PubMed ID: 15182705
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of microscopic Forster resonance energy transfer to cytological diagnosis of the thyroid tumors.
    Murata S; Herman P; Iwashina M; Mochizuki K; Nakazawa T; Kondo T; Nakamura N; Lakowicz JR; Katoh R
    J Biomed Opt; 2005; 10(3):034008. PubMed ID: 16229652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One- and two-photon fluorescence resonance energy transfer microscopy to establish a clustered distribution of receptor-ligand complexes in endocytic membranes.
    Wallrabe H; Stanley M; Periasamy A; Barroso M
    J Biomed Opt; 2003 Jul; 8(3):339-46. PubMed ID: 12880337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density.
    Giannone G; Hosy E; Levet F; Constals A; Schulze K; Sobolevsky AI; Rosconi MP; Gouaux E; Tampé R; Choquet D; Cognet L
    Biophys J; 2010 Aug; 99(4):1303-10. PubMed ID: 20713016
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoscopy for nanoscience: how super-resolution microscopy extends imaging for nanotechnology.
    Johnson SA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(3):266-81. PubMed ID: 25298332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multicolor FRET-FLIM Microscopy to Analyze Multiprotein Interactions in Live Cells.
    Ahmed A; Schoberer J; Cooke E; Botchway SW
    Methods Mol Biol; 2021; 2247():287-301. PubMed ID: 33301124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectral wide-field microscopic fluorescence resonance energy transfer imaging in live cells.
    Zhang L; Qin G; Chai L; Zhang J; Yang F; Yang H; Xie S; Chen T
    J Biomed Opt; 2015 Aug; 20(8):86011. PubMed ID: 26280539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accelerated super-resolution imaging with FRET-PAINT.
    Lee J; Park S; Kang W; Hohng S
    Mol Brain; 2017 Dec; 10(1):63. PubMed ID: 29284498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Saturated Förster resonance energy transfer microscopy with a stimulated emission depletion beam: a pathway toward single-molecule resolution in far-field bioimaging.
    Deng S; Chen J; Huang Q; Fan C; Cheng Y
    Opt Lett; 2010 Dec; 35(23):3862-4. PubMed ID: 21124546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence resonance energy transfer determinations using multiphoton fluorescence lifetime imaging microscopy to characterize amyloid-beta plaques.
    Bacskai BJ; Skoch J; Hickey GA; Allen R; Hyman BT
    J Biomed Opt; 2003 Jul; 8(3):368-75. PubMed ID: 12880341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly bright and stable NIR-BRET with blue-shifted coelenterazine derivatives for deep-tissue imaging of molecular events
    Nishihara R; Paulmurugan R; Nakajima T; Yamamoto E; Natarajan A; Afjei R; Hiruta Y; Iwasawa N; Nishiyama S; Citterio D; Sato M; Kim SB; Suzuki K
    Theranostics; 2019; 9(9):2646-2661. PubMed ID: 31131059
    [No Abstract]   [Full Text] [Related]  

  • 32. Iterative voting for inference of structural saliency and characterization of subcellular events.
    Parvin B; Yang Q; Han J; Chang H; Rydberg B; Barcellos-Hoff MH
    IEEE Trans Image Process; 2007 Mar; 16(3):615-23. PubMed ID: 17357723
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analytical use of multi-protein Fluorescence Resonance Energy Transfer to demonstrate membrane-facilitated interactions within cytokine receptor complexes.
    Krause CD; Izotova LS; Pestka S
    Cytokine; 2013 Oct; 64(1):298-309. PubMed ID: 23769803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparing the quantification of Forster resonance energy transfer measurement accuracies based on intensity, spectral, and lifetime imaging.
    Pelet S; Previte MJ; So PT
    J Biomed Opt; 2006; 11(3):34017. PubMed ID: 16822067
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional FRET reconstruction microscopy for analysis of dynamic molecular interactions in live cells.
    Hoppe AD; Shorte SL; Swanson JA; Heintzmann R
    Biophys J; 2008 Jul; 95(1):400-18. PubMed ID: 18339754
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetically encoded FRET indicators for live-cell imaging of histone acetylation.
    Sasaki K; Yoshida M
    Methods Mol Biol; 2014; 1071():151-61. PubMed ID: 24052387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-molecule methods to study membrane receptor oligomerization.
    Fricke F; Dietz MS; Heilemann M
    Chemphyschem; 2015 Mar; 16(4):713-21. PubMed ID: 25521567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescence anisotropy imaging microscopy for homo-FRET in living cells.
    Tramier M; Coppey-Moisan M
    Methods Cell Biol; 2008; 85():395-414. PubMed ID: 18155472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional super-resolution protein localization correlated with vitrified cellular context.
    Liu B; Xue Y; Zhao W; Chen Y; Fan C; Gu L; Zhang Y; Zhang X; Sun L; Huang X; Ding W; Sun F; Ji W; Xu T
    Sci Rep; 2015 Oct; 5():13017. PubMed ID: 26462878
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells.
    Subach FV; Patterson GH; Renz M; Lippincott-Schwartz J; Verkhusha VV
    J Am Chem Soc; 2010 May; 132(18):6481-91. PubMed ID: 20394363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.