These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 23925066)
1. Digitized single scattering nanoparticles for probing molecular binding. Liu Y; Huang CZ Chem Commun (Camb); 2013 Sep; 49(74):8262-4. PubMed ID: 23925066 [TBL] [Abstract][Full Text] [Related]
2. Light scattering methods for tracking gold nanoparticles aggregation induced by biotin-neutravidin interaction. Delfino I Biophys Chem; 2013; 177-178():7-13. PubMed ID: 23563185 [TBL] [Abstract][Full Text] [Related]
3. Acoustic Sensing Based on Density Shift of Microspheres by Surface Binding of Gold Nanoparticles. Miyagawa A; Inoue Y; Harada M; Okada T Anal Sci; 2017; 33(8):939-944. PubMed ID: 28794331 [TBL] [Abstract][Full Text] [Related]
4. Molecular recognition of avidin on biotin-functionalized gold surfaces detected by FT-IRRAS and use of metal carbonyl probes. Yam CM; Pradier CM; Salmain M; Fischer-Durand N; Jaouen G J Colloid Interface Sci; 2002 Jan; 245(1):204-7. PubMed ID: 16290351 [TBL] [Abstract][Full Text] [Related]
5. A sensitive and selective resonance Rayleigh scattering method for quick detection of avidin using affinity labeling Au nanoparticles. Wang Q; Huang X; Fu X; Deng H; Ma M; Cai Z Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jun; 162():75-80. PubMed ID: 26978788 [TBL] [Abstract][Full Text] [Related]
6. Gold nanoparticle-biotinylated liposome hybrids as analytical reagents for biotin determination using a competitive assay and resonance light scattering detection. Román-Pizarro V; Fernández-Romero JM; Gómez-Hens A Talanta; 2012 Sep; 99():538-43. PubMed ID: 22967591 [TBL] [Abstract][Full Text] [Related]
7. Gold nanoparticles paper as a SERS bio-diagnostic platform. Ngo YH; Then WL; Shen W; Garnier G J Colloid Interface Sci; 2013 Nov; 409():59-65. PubMed ID: 23978290 [TBL] [Abstract][Full Text] [Related]
8. Influence of particle size on the binding activity of proteins adsorbed onto gold nanoparticles. Kaur K; Forrest JA Langmuir; 2012 Feb; 28(5):2736-44. PubMed ID: 22132998 [TBL] [Abstract][Full Text] [Related]
9. Radioprotective effects produced by the condensation of plasmid DNA with avidin and biotinylated gold nanoparticles. Perry CC; Urata SM; Lee M; Aguilera JA; Milligan JR Radiat Environ Biophys; 2012 Nov; 51(4):457-68. PubMed ID: 22825766 [TBL] [Abstract][Full Text] [Related]
10. Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance. Li X; Tamada K; Baba A; Knoll W; Hara M J Phys Chem B; 2006 Aug; 110(32):15755-62. PubMed ID: 16898722 [TBL] [Abstract][Full Text] [Related]
11. New derivative of carnosine for nanoparticle assemblies. Bellia F; Oliveri V; Rizzarelli E; Vecchio G Eur J Med Chem; 2013; 70():225-32. PubMed ID: 24158014 [TBL] [Abstract][Full Text] [Related]
12. Poly(amidoamine)-dendrimer-modified gold surfaces for anomalous reflection of gold to detect biomolecular interactions. Syahir A; Tomizaki KY; Kajikawa K; Mihara H Langmuir; 2009 Apr; 25(6):3667-74. PubMed ID: 19227984 [TBL] [Abstract][Full Text] [Related]
13. In situ IR spectroscopic studies of the avidin-biotin bioconjugation reaction on CdS particle films. Young AG; McQuillan AJ; Green DP Langmuir; 2009 Jul; 25(13):7416-23. PubMed ID: 19354218 [TBL] [Abstract][Full Text] [Related]
17. Ultra-sensitive colorimetric method to quantitate hundreds of polynucleotide molecules by gold nanoparticles with silver enhancement. Li BS; Zhao LF; Zhang C; Hei XH; Li F; Li XB; Shen J; Li YY; Huang Q; Xu SQ Anal Sci; 2006 Oct; 22(10):1367-70. PubMed ID: 17038778 [TBL] [Abstract][Full Text] [Related]
18. Sensitive chemiluminescent imaging for chemoselective analysis of glycan expression on living cells using a multifunctional nanoprobe. Han E; Ding L; Qian R; Bao L; Ju H Anal Chem; 2012 Feb; 84(3):1452-8. PubMed ID: 22217325 [TBL] [Abstract][Full Text] [Related]
19. Aging of gold nanoparticles: ligand exchange with disulfides. Ma Y; Chechik V Langmuir; 2011 Dec; 27(23):14432-7. PubMed ID: 21985439 [TBL] [Abstract][Full Text] [Related]
20. Two-color, laser excitation improves temporal resolution for detecting the dynamic, plasmonic coupling between metallic nanoparticles. Wiener DM; Lionberger TA Anal Chem; 2013 May; 85(10):5095-102. PubMed ID: 23581610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]