These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23925125)

  • 1. Selective fluorescent-free detection of biomolecules on nanobiochips by wavelength dependent-enhanced dark field illumination.
    Lee S; Yu H; Kang SH
    Chem Commun (Camb); 2013 Sep; 49(75):8335-7. PubMed ID: 23925125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent-free detection on nanobiochips based on wavelength-dependent single plasmonic nanoparticles by differential interference contrast microscopy.
    Lee S; Kang SH
    Biosens Bioelectron; 2014 Oct; 60():45-51. PubMed ID: 24768861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative nanoimmunosensor based on dark-field illumination with enhanced sensitivity and on-off switching using scattering signals.
    Lee S; Nan H; Yu H; Kang SH
    Biosens Bioelectron; 2016 May; 79():709-14. PubMed ID: 26774086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasensitive magnetic field-assisted surface plasmon resonance immunoassay for human cardiac troponin I.
    Wu Q; Sun Y; Zhang D; Li S; Zhang Y; Ma P; Yu Y; Wang X; Song D
    Biosens Bioelectron; 2017 Oct; 96():288-293. PubMed ID: 28505563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual sandwich immunoassay system on the basis of plasmon resonance scattering signals of silver nanoparticles.
    Ling J; Li YF; Huang CZ
    Anal Chem; 2009 Feb; 81(4):1707-14. PubMed ID: 19173573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-sensitive plasmonic nanometal scattering immunosensor based on optical control in the evanescent field layer.
    Lee S; Park G; Chakkarapani SK; Kang SH
    Biosens Bioelectron; 2015 Jan; 63():444-449. PubMed ID: 25128624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed self-assembly of gold binding polypeptide-protein A fusion proteins for development of gold nanoparticle-based SPR immunosensors.
    Ko S; Park TJ; Kim HS; Kim JH; Cho YJ
    Biosens Bioelectron; 2009 Apr; 24(8):2592-7. PubMed ID: 19243930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays.
    Huang CH; Lin HY; Lau BC; Liu CY; Chui HC; Tzeng Y
    Opt Express; 2010 Dec; 18(26):27891-9. PubMed ID: 21197062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal enhancement of surface plasmon-coupled emission (SPCE) with the evanescent field of surface plasmons on a bimetallic paraboloid biochip.
    Yuk JS; MacCraith BD; McDonagh C
    Biosens Bioelectron; 2011 Mar; 26(7):3213-8. PubMed ID: 21256731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavelength-dependent differential interference contrast microscopy: multiplexing detection using nonfluorescent nanoparticles.
    Luo Y; Sun W; Gu Y; Wang G; Fang N
    Anal Chem; 2010 Aug; 82(15):6675-9. PubMed ID: 20614872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrofocusing-enhanced localized surface plasmon resonance biosensors.
    Zhang J; Wang Y; Wong TI; Liu X; Zhou X; Liedberg B
    Nanoscale; 2015 Nov; 7(41):17244-8. PubMed ID: 26370057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced detection sensitivity of carcinoembryonic antigen on a plasmonic nanoimmunosensor by transmission grating-based total internal reflection scattering microscopy.
    Ahn S; Yu H; Kang SH
    Biosens Bioelectron; 2017 Oct; 96():159-166. PubMed ID: 28494367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods.
    Law WC; Yong KT; Baev A; Hu R; Prasad PN
    Opt Express; 2009 Oct; 17(21):19041-6. PubMed ID: 20372639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocatalytic silver enhancement reaction for gravimetric immunosensors.
    Seo H; Joo J; Ko W; Jung N; Jeon S
    Nanotechnology; 2010 Dec; 21(50):505502. PubMed ID: 21098950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of aging on optical properties of bimetallic sensor chips.
    Chen X; Jiang K
    Opt Express; 2010 Jan; 18(2):1105-12. PubMed ID: 20173933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor.
    Jeong HH; Erdene N; Park JH; Jeong DH; Lee HY; Lee SK
    Biosens Bioelectron; 2013 Jan; 39(1):346-51. PubMed ID: 22951530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex.
    Choi I; Song HD; Lee S; Yang YI; Kang T; Yi J
    J Am Chem Soc; 2012 Jul; 134(29):12083-90. PubMed ID: 22746373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Label-free electrochemiluminescence immunosensor for cardiac troponin I using luminol functionalized gold nanoparticles as a sensing platform.
    Li F; Yu Y; Cui H; Yang D; Bian Z
    Analyst; 2013 Mar; 138(6):1844-50. PubMed ID: 23377497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visible paper chip immunoassay for rapid determination of bacteria in water distribution system.
    Ma S; Tang Y; Liu J; Wu J
    Talanta; 2014 Mar; 120():135-40. PubMed ID: 24468352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.