These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23925374)

  • 1. Nonlinear Signal-Specific ADC for Efficient Neural Recording in Brain-Machine Interfaces.
    Judy M; Sodagar AM; Lotfi R; Sawan M
    IEEE Trans Biomed Circuits Syst; 2014 Jun; 8(3):371-81. PubMed ID: 23925374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control.
    Liu X; Zhang M; Richardson AG; Lucas TH; Van der Spiegel J
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):729-742. PubMed ID: 28029630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive Resolution ADC Array for an Implantable Neural Sensor.
    O'Driscoll S; Shenoy KV; Meng TH
    IEEE Trans Biomed Circuits Syst; 2011 Apr; 5(2):120-30. PubMed ID: 23851200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for compression of intra-cortically-recorded neural signals dedicated to implantable brain-machine interfaces.
    Shaeri MA; Sodagar AM
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):485-97. PubMed ID: 25222949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 1.33 μW 8.02-ENOB 100 kS/s successive approximation ADC with supply reduction technique for implantable retinal prosthesis.
    Tang H; Sun ZC; Chew KW; Siek L
    IEEE Trans Biomed Circuits Syst; 2014 Dec; 8(6):844-56. PubMed ID: 25608284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A low-power configurable neural recording system for epileptic seizure detection.
    Qian C; Shi J; Parramon J; Sánchez-Sinencio E
    IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):499-512. PubMed ID: 23893209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 64-channel neuron recording system.
    Lo YK; Liu W; Chen K; Tsai MH; Hsueh FL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2862-5. PubMed ID: 22254938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 515 nW, 0-18 dB Programmable Gain Analog-to-Digital Converter for In-Channel Neural Recording Interfaces.
    Rodriguez-Perez A; Delgado-Restituto M; Medeiro F
    IEEE Trans Biomed Circuits Syst; 2014 Jun; 8(3):358-70. PubMed ID: 23899652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 10-Bit 400-KS/s Low Noise Asynchronous SAR ADC with Dual-Domain Comparator for Input-Referred Noise Reduction.
    Lee SH; Lee WY
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 10-Bit 300 kS/s Reference-Voltage Regulator Free SAR ADC for Wireless-Powered Implantable Medical Devices.
    Yang Y; Zhou J; Liu X; Goh WL
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29970814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive resolution ADC array for neural implant.
    O'Driscoll S; Meng TH
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1053-6. PubMed ID: 19965135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 110-nW in-channel sigma-delta converter for large-scale neural recording implants.
    Rezaei M; Maghsoudloo E; Sawan M; Gosselin B
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5741-5744. PubMed ID: 28269558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A frequency shaping neural recorder with 3 pF input capacitance and 11 plus 4.5 bits dynamic range.
    Xu J; Wu T; Liu W; Yang Z
    IEEE Trans Biomed Circuits Syst; 2014 Aug; 8(4):510-27. PubMed ID: 25073127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 0.45 V 100-channel neural-recording IC with sub- μW/channel consumption in 0.18 μm CMOS.
    Han D; Zheng Y; Rajkumar R; Dawe GS; Je M
    IEEE Trans Biomed Circuits Syst; 2013 Dec; 7(6):735-46. PubMed ID: 24473539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 0.3V 10b 3MS/s SAR ADC With Comparator Calibration and Kickback Noise Reduction for Biomedical Applications.
    Wang SH; Hung CC
    IEEE Trans Biomed Circuits Syst; 2020 Jun; 14(3):558-569. PubMed ID: 32224463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Wireless Headstage System Based on Neural-Recording Chip Featuring 315 nW Kickback-Reduction SAR ADC.
    Zhang Y; Yang C; Sun J; Li Z; Gao H; Luo Y; Xu K; Pan G; Zhao B
    IEEE Trans Biomed Circuits Syst; 2023 Feb; 17(1):105-115. PubMed ID: 36423310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 700mV low power low noise implantable neural recording system design.
    An G; Hutchens C; Rennaker RL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6557-60. PubMed ID: 25571498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Wide Dynamic Range Neural Data Acquisition System With High-Precision Delta-Sigma ADC and On-Chip EC-PC Spike Processor.
    Xu J; Nguyen AT; Wu T; Zhao W; Luu DK; Yang Z
    IEEE Trans Biomed Circuits Syst; 2020 Jun; 14(3):425-440. PubMed ID: 32031949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Hardware-Efficient Scalable Spike Sorting Neural Signal Processor Module for Implantable High-Channel-Count Brain Machine Interfaces.
    Yang Y; Boling S; Mason AJ
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):743-754. PubMed ID: 28541908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Low-Power Current-Reuse Analog Front-End for High-Density Neural Recording Implants.
    Rezaei M; Maghsoudloo E; Bories C; De Koninck Y; Gosselin B
    IEEE Trans Biomed Circuits Syst; 2018 Apr; 12(2):271-280. PubMed ID: 29570055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.