BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 23926808)

  • 1. Inflammatory effect of monopolar radiofrequency treatment on collagen fibrils in rabbit skins.
    Choi S; Cheong Y; Shin JH; Jin KH; Park HK
    J Biomed Nanotechnol; 2013 Aug; 9(8):1403-7. PubMed ID: 23926808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postoperative effect of radiofrequency treatments on the rabbit dermal collagen fibrillary matrix.
    Kwak HW; Choi S; Cheong Y; Burm JS; Jin KH; Park HK; Shin JH
    Microsc Res Tech; 2013 Mar; 76(3):219-24. PubMed ID: 22927097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term nanostructural effects of high radiofrequency treatment on the skin tissues of rabbits.
    Choi S; Cheong Y; Shin JH; Lee HJ; Lee GJ; Choi SK; Jin KH; Park HK
    Lasers Med Sci; 2012 Sep; 27(5):923-33. PubMed ID: 22037867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mid-long term effect of non-ablative high radiofrequency therapy on the rabbit dermal extracellular matrix.
    Choi S; Shin JH; Nam SW; Jang H; Tao T; Kwak HW; Jin KH; Lee GJ; Park HK
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3761-4. PubMed ID: 24110549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiofrequency treatment induces fibroblast growth factor 2 expression and subsequently promotes neocollagenesis and neoangiogenesis in the skin tissue.
    Meyer PF; de Oliveira P; Silva FKBA; da Costa ACS; Pereira CRA; Casenave S; Valentim Silva RM; Araújo-Neto LG; Santos-Filho SD; Aizamaque E; Araújo HG; Bernardo-Filho M; Carvalho MGF; Soares CD
    Lasers Med Sci; 2017 Nov; 32(8):1727-1736. PubMed ID: 28569344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of monopolar radiofrequency treatment over soft-tissue fillers in an animal model: part 2.
    Shumaker PR; England LJ; Dover JS; Ross EV; Harford R; Derienzo D; Bogle M; Uebelhoer N; Jacoby M; Pope K
    Lasers Surg Med; 2006 Mar; 38(3):211-7. PubMed ID: 16485274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactive thermal tissue reactions of 7-MHz intense focused ultrasound and 1-MHz and 6-MHz radiofrequency on cadaveric skin.
    Kim H; Ahn KJ; Lee S; Park H; Cho SB
    Skin Res Technol; 2019 Mar; 25(2):171-178. PubMed ID: 30320473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the Dermis Thickness on the Results of the Skin Treatment with Monopolar and Bipolar Radiofrequency Currents.
    Kruglikov IL
    Biomed Res Int; 2016; 2016():1953203. PubMed ID: 27493952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of nanostructural changes following acute injury using atomic force microscopy in rabbit vocal folds.
    Lee YC; Kim HJ; Kim KS; Choi S; Kim SW; Park HK; Eun YG
    Microsc Res Tech; 2015 Jul; 78(7):569-76. PubMed ID: 25900427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correction of age-related changes in the skin at the dermal and subdermal level using radiofrequency macroneedling therapy.
    Flegontova E; Kreindel M; Vranis NM; Mulholland RS
    J Cosmet Dermatol; 2024 Jul; 23(7):2401-2410. PubMed ID: 38778550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructural response of mitomycin C application on human scleral tissues.
    Choi S; Lee SC; Cheong Y; Shin JH; Jin KH; Park HK
    J Biomed Nanotechnol; 2013 Aug; 9(8):1393-7. PubMed ID: 23926806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of monopolar radiofrequency treatment over soft-tissue fillers in an animal model.
    England LJ; Tan MH; Shumaker PR; Egbert BM; Pittelko K; Orentreich D; Pope K
    Lasers Surg Med; 2005 Dec; 37(5):356-65. PubMed ID: 16240419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microneedle fractional radiofrequency-induced micropores evaluated by in vivo reflectance confocal microscopy, optical coherence tomography, and histology.
    Hansen FS; Wenande E; Haedersdal M; Fuchs CSK
    Skin Res Technol; 2019 Jul; 25(4):482-488. PubMed ID: 30659657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal effects of percutaneous application of plasma/radiofrequency energy on porcine dermis and fibroseptal network.
    Ruff PG
    J Cosmet Dermatol; 2021 Jul; 20(7):2125-2131. PubMed ID: 33197275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bipolar fractional radiofrequency treatment induces neoelastogenesis and neocollagenesis.
    Hantash BM; Ubeid AA; Chang H; Kafi R; Renton B
    Lasers Surg Med; 2009 Jan; 41(1):1-9. PubMed ID: 19143021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of inflammation-mediated osteopenia (IMO) on the structure of rabbit bone and skin collagen fibrils.
    Kounadi E; Fountos G; Tzaphlidou M
    Connect Tissue Res; 1998; 37(1-2):69-76. PubMed ID: 9643648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructural evaluation of multiple pass low energy versus single pass high energy radio-frequency treatment.
    Kist D; Burns AJ; Sanner R; Counters J; Zelickson B
    Lasers Surg Med; 2006 Feb; 38(2):150-4. PubMed ID: 16493679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histological and ultrastructural evaluation of the effects of a radiofrequency-based nonablative dermal remodeling device: a pilot study.
    Zelickson BD; Kist D; Bernstein E; Brown DB; Ksenzenko S; Burns J; Kilmer S; Mehregan D; Pope K
    Arch Dermatol; 2004 Feb; 140(2):204-9. PubMed ID: 14967794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facial tightening with an advanced 4-MHz monopolar radiofrequency device.
    Taub AF; Tucker RD; Palange A
    J Drugs Dermatol; 2012 Nov; 11(11):1288-94. PubMed ID: 23135076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonablative 4-MHz dual radiofrequency wand rejuvenation treatment for periorbital rhytides and midface laxity.
    Javate RM; Cruz RT; Khan J; Trakos N; Gordon RE
    Ophthalmic Plast Reconstr Surg; 2011; 27(3):180-5. PubMed ID: 21283035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.