These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 23926854)
1. Field testing of new-technology ambient air ozone monitors. Ollison WM; Crow W; Spicer CW J Air Waste Manag Assoc; 2013 Jul; 63(7):855-63. PubMed ID: 23926854 [TBL] [Abstract][Full Text] [Related]
2. Field evaluations of newly available "interference-free" monitors for nitrogen dioxide and ozone at near-road and conventional National Ambient Air Quality Standards compliance sites. Leston AR; Ollison WM J Air Waste Manag Assoc; 2017 Nov; 67(11):1240-1248. PubMed ID: 28633004 [TBL] [Abstract][Full Text] [Related]
3. Comparison of ultraviolet absorbance, chemiluminescence, and DOAS instruments for ambient ozone monitoring. Williams EJ; Fehsenfeld FC; Jobson BT; Kuster WC; Goldan PD; Stutz J; McClenny WA Environ Sci Technol; 2006 Sep; 40(18):5755-62. PubMed ID: 17007137 [TBL] [Abstract][Full Text] [Related]
4. A re-examination of ambient air ozone monitor interferences. Spicer CW; Joseph DW; Ollison WM J Air Waste Manag Assoc; 2010 Nov; 60(11):1353-64. PubMed ID: 21141429 [TBL] [Abstract][Full Text] [Related]
5. Observations and impacts of transported Canadian wildfire smoke on ozone and aerosol air quality in the Maryland region on June 9-12, 2015. Dreessen J; Sullivan J; Delgado R J Air Waste Manag Assoc; 2016 Sep; 66(9):842-62. PubMed ID: 26963934 [TBL] [Abstract][Full Text] [Related]
6. Ozone monitoring using differential optical absorption spectroscopy (DOAS) and UV photometry instruments in Sohar, Oman. Nawahda A Environ Monit Assess; 2015 Aug; 187(8):485. PubMed ID: 26138853 [TBL] [Abstract][Full Text] [Related]
7. Measurement of microenvironmental ozone concentrations in Durham, North Carolina, using a 2B Technologies 205 Federal Equivalent Method monitor and an interference-free 2B Technologies 211 monitor. Johnson T; Capel J; Ollison W J Air Waste Manag Assoc; 2014 Mar; 64(3):360-71. PubMed ID: 24701694 [TBL] [Abstract][Full Text] [Related]
9. Comparison of spatiotemporal prediction models of daily exposure of individuals to ambient nitrogen dioxide and ozone in Montreal, Canada. Buteau S; Hatzopoulou M; Crouse DL; Smargiassi A; Burnett RT; Logan T; Cavellin LD; Goldberg MS Environ Res; 2017 Jul; 156():201-230. PubMed ID: 28359040 [TBL] [Abstract][Full Text] [Related]
10. Measurement of atmospheric ozone by cavity ring-down spectroscopy. Washenfelder RA; Wagner NL; Dube WP; Brown SS Environ Sci Technol; 2011 Apr; 45(7):2938-44. PubMed ID: 21366216 [TBL] [Abstract][Full Text] [Related]
11. Mechanism and elimination of a water vapor interference in the measurement of ozone by UV absorbance. Wilson KL; Birks JW Environ Sci Technol; 2006 Oct; 40(20):6361-7. PubMed ID: 17120566 [TBL] [Abstract][Full Text] [Related]
12. High density ozone monitoring using gas sensitive semi-conductor sensors in the Lower Fraser Valley, British Columbia. Bart M; Williams DE; Ainslie B; McKendry I; Salmond J; Grange SK; Alavi-Shoshtari M; Steyn D; Henshaw GS Environ Sci Technol; 2014 Apr; 48(7):3970-7. PubMed ID: 24579930 [TBL] [Abstract][Full Text] [Related]
13. Laboratory and field evaluation of measurement methods for one-hour exposures to O3, PM2.5, and CO. Chang LT; Suh HH; Wolfson JM; Misra K; Allen GA; Catalano PJ; Koutrakis P J Air Waste Manag Assoc; 2001 Oct; 51(10):1414-22. PubMed ID: 11686245 [TBL] [Abstract][Full Text] [Related]
14. Comparison of ozone measurement methods in biomass burning smoke: an evaluation under field and laboratory conditions. Long RW; Whitehill A; Habel A; Urbanski S; Halliday H; Colón M; Kaushik S; Landis MS Atmos Meas Tech; 2021 Mar; 14(3):1783-1800. PubMed ID: 34017362 [TBL] [Abstract][Full Text] [Related]
15. An improved dual channel PERCA instrument for atmospheric measurements of peroxy radicals. Green TJ; Reeves CE; Fleming ZL; Brough N; Rickard AR; Bandy BJ; Monks PS; Penkett SA J Environ Monit; 2006 May; 8(5):530-6. PubMed ID: 16688354 [TBL] [Abstract][Full Text] [Related]
16. Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings, Yangtze River Delta, China. An J; Zou J; Wang J; Lin X; Zhu B Environ Sci Pollut Res Int; 2015 Dec; 22(24):19607-17. PubMed ID: 26272292 [TBL] [Abstract][Full Text] [Related]
17. Potential interferences in photolytic nitrogen dioxide converters for ambient air monitoring: Evaluation of a prototype. Jordan N; Garner NM; Matchett LC; Tokarek TW; Osthoff HD; Odame-Ankrah CA; Grimm CE; Pickrell KN; Swainson C; Rosentreter BW J Air Waste Manag Assoc; 2020 Aug; 70(8):753-764. PubMed ID: 32412399 [TBL] [Abstract][Full Text] [Related]
18. Comparison of chemiluminescence and ultraviolet ozone monitor responses in the presence of humidity and photochemical pollutants. Kleindienst TE; Hudgens EE; Smith DF; McElroy FF; Bufalini JJ Air Waste; 1993 Feb; 43(2):213-22. PubMed ID: 15739516 [TBL] [Abstract][Full Text] [Related]
19. Changes in diurnal patterns related to changes in ozone levels. Lefohn AS; Foley JK; Shadwick DS; Tilton BE Air Waste; 1993 Nov; 43(11):1472-8. PubMed ID: 8260140 [TBL] [Abstract][Full Text] [Related]
20. Performance and diagnostic evaluation of ozone predictions by the Eta-Community Multiscale Air Quality Forecast System during the 2002 New England Air Quality Study. Yu S; Mathur R; Kang D; Schere K; Eder B; Pleim J J Air Waste Manag Assoc; 2006 Oct; 56(10):1459-71. PubMed ID: 17063868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]