These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23926946)

  • 1. ExoSensor 517: a dual-analyte fluorescent chemosensor for visualizing neurotransmitter exocytosis.
    Klockow JL; Hettie KS; Glass TE
    ACS Chem Neurosci; 2013 Oct; 4(10):1334-8. PubMed ID: 23926946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Molecular Logic Gates Designed for Imaging Released Neurotransmitters.
    Klockow JL; Hettie KS; Secor KE; Barman DN; Glass TE
    Chemistry; 2015 Aug; 21(32):11446-51. PubMed ID: 26119241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-input logic gates with potential applications for neuronal imaging.
    Hettie KS; Klockow JL; Glass TE
    J Am Chem Soc; 2014 Apr; 136(13):4877-80. PubMed ID: 24611584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroactive fluorescent false neurotransmitter FFN102 partially replaces dopamine in PC12 cell vesicles.
    Hu L; Savy A; Grimaud L; Guille-Collignon M; Lemaître F; Amatore C; Delacotte J
    Biophys Chem; 2019 Feb; 245():1-5. PubMed ID: 30500608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of pH-responsive fluorescent false neurotransmitters.
    Lee M; Gubernator NG; Sulzer D; Sames D
    J Am Chem Soc; 2010 Jul; 132(26):8828-30. PubMed ID: 20540519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How neurosecretory vesicles release their cargo.
    Scalettar BA
    Neuroscientist; 2006 Apr; 12(2):164-76. PubMed ID: 16514013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vacuolar H(+)-ATPase subunits Voa1 and Voa2 cooperatively regulate secretory vesicle acidification, transmitter uptake, and storage.
    Saw NM; Kang SY; Parsaud L; Han GA; Jiang T; Grzegorczyk K; Surkont M; Sun-Wada GH; Wada Y; Li L; Sugita S
    Mol Biol Cell; 2011 Sep; 22(18):3394-409. PubMed ID: 21795392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A High-Affinity Fluorescent Sensor for Catecholamine: Application to Monitoring Norepinephrine Exocytosis.
    Zhang L; Liu XA; Gillis KD; Glass TE
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7611-7614. PubMed ID: 30791180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomics of neuroendocrine secretory vesicles reveal distinct functional systems for biosynthesis and exocytosis of peptide hormones and neurotransmitters.
    Wegrzyn J; Lee J; Neveu JM; Lane WS; Hook V
    J Proteome Res; 2007 May; 6(5):1652-65. PubMed ID: 17408250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Dual Functional Electroactive and Fluorescent Probe for Coupled Measurements of Vesicular Exocytosis with High Spatial and Temporal Resolution.
    Liu X; Savy A; Maurin S; Grimaud L; Darchen F; Quinton D; Labbé E; Buriez O; Delacotte J; Lemaître F; Guille-Collignon M
    Angew Chem Int Ed Engl; 2017 Feb; 56(9):2366-2370. PubMed ID: 28117543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intravesicular factors controlling exocytosis in chromaffin cells.
    Borges R; Pereda D; Beltrán B; Prunell M; Rodríguez M; Machado JD
    Cell Mol Neurobiol; 2010 Nov; 30(8):1359-64. PubMed ID: 21046452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delay between fusion pore opening and peptide release from large dense-core vesicles in neuroendocrine cells.
    Barg S; Olofsson CS; Schriever-Abeln J; Wendt A; Gebre-Medhin S; Renström E; Rorsman P
    Neuron; 2002 Jan; 33(2):287-99. PubMed ID: 11804575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coumarin-3-aldehyde as a scaffold for the design of tunable PET-modulated fluorescent sensors for neurotransmitters.
    Hettie KS; Glass TE
    Chemistry; 2014 Dec; 20(52):17488-99. PubMed ID: 25346467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltammetric and pharmacological characterization of dopamine release from single exocytotic events at rat pheochromocytoma (PC12) cells.
    Kozminski KD; Gutman DA; Davila V; Sulzer D; Ewing AG
    Anal Chem; 1998 Aug; 70(15):3123-30. PubMed ID: 11013717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular Osmotic Stress Reduces the Vesicle Size while Keeping a Constant Neurotransmitter Concentration.
    Fathali H; Dunevall J; Majdi S; Cans AS
    ACS Chem Neurosci; 2017 Feb; 8(2):368-375. PubMed ID: 27966899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of synaptic vesicle recycling illuminated by fluorescent dyes.
    Cousin MA; Robinson PJ
    J Neurochem; 1999 Dec; 73(6):2227-39. PubMed ID: 10582580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beta-amyloid peptides undergo regulated co-secretion with neuropeptide and catecholamine neurotransmitters.
    Toneff T; Funkelstein L; Mosier C; Abagyan A; Ziegler M; Hook V
    Peptides; 2013 Aug; 46():126-35. PubMed ID: 23747840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Influence of calcium ionophore A23187 on neurotransmitter release in rat brain synaptosomes].
    Vasim TV; Lavrukevich TV; Rakovich AA; Fedorovich SV; Konev SV
    Biofizika; 2004; 49(3):524-8. PubMed ID: 15327213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurosecretory vesicles can be hybrids of synaptic vesicles and secretory granules.
    Bauerfeind R; Jelinek R; Hellwig A; Huttner WB
    Proc Natl Acad Sci U S A; 1995 Aug; 92(16):7342-6. PubMed ID: 7638193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential Co-release of Two Neurotransmitters from a Vesicle Fusion Pore in Mammalian Adrenal Chromaffin Cells.
    Zhang Q; Liu B; Wu Q; Liu B; Li Y; Sun S; Wang Y; Wu X; Chai Z; Jiang X; Liu X; Hu M; Wang Y; Yang Y; Wang L; Kang X; Xiong Y; Zhou Y; Chen X; Zheng L; Zhang B; Wang C; Zhu F; Zhou Z
    Neuron; 2019 Apr; 102(1):173-183.e4. PubMed ID: 30773347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.