These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23927050)

  • 41. Graphene encapsulated rubber latex composites with high dielectric constant, low dielectric loss and low percolation threshold.
    Tian M; Zhang J; Zhang L; Liu S; Zan X; Nishi T; Ning N
    J Colloid Interface Sci; 2014 Sep; 430():249-56. PubMed ID: 24972295
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Graphene networks and their influence on free-volume properties of graphene-epoxidized natural rubber composites with a segregated structure: rheological and positron annihilation studies.
    He C; She X; Peng Z; Zhong J; Liao S; Gong W; Liao J; Kong L
    Phys Chem Chem Phys; 2015 May; 17(18):12175-84. PubMed ID: 25881784
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Facile fabrication of polyurethane/epoxy IPNs filled graphene aerogel with improved damping, thermal and mechanical properties.
    Zhang C; Chen Y; Li H; Liu H
    RSC Adv; 2018 Jul; 8(48):27390-27399. PubMed ID: 35540022
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Graphene-Elastomer Composites with Segregated Nanostructured Network for Liquid and Strain Sensing Application.
    Lin Y; Dong X; Liu S; Chen S; Wei Y; Liu L
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):24143-51. PubMed ID: 27552175
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Connectivity percolation of polydisperse anisotropic nanofillers.
    Otten RH; van der Schoot P
    J Chem Phys; 2011 Mar; 134(9):094902. PubMed ID: 21384998
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Localized in situ polymerization on graphene surfaces for stabilized graphene dispersions.
    Das S; Wajid AS; Shelburne JL; Liao YC; Green MJ
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1844-51. PubMed ID: 21539387
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermal Percolation in Well-Defined Nanocomposite Thin Films.
    Chang BS; Li C; Dai J; Evans K; Huang J; He M; Hu W; Tian Z; Xu T
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14579-14587. PubMed ID: 35311286
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of shape and flexibility of conductive fillers in nanocomposites on percolating network formation and electrical conductivity.
    Kwon S; Cho HW; Gwon G; Kim H; Sung BJ
    Phys Rev E; 2016 Mar; 93(3):032501. PubMed ID: 27078399
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Graphene-based composite materials.
    Stankovich S; Dikin DA; Dommett GH; Kohlhaas KM; Zimney EJ; Stach EA; Piner RD; Nguyen ST; Ruoff RS
    Nature; 2006 Jul; 442(7100):282-6. PubMed ID: 16855586
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Laser Treatments for Improving Electrical Conductivity and Piezoresistive Behavior of Polymer⁻Carbon Nanofiller Composites.
    Caradonna A; Badini C; Padovano E; Veca A; De Meo E; Pietroluongo M
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30669252
    [TBL] [Abstract][Full Text] [Related]  

  • 51. From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites.
    Zaman I; Kuan HC; Dai J; Kawashima N; Michelmore A; Sovi A; Dong S; Luong L; Ma J
    Nanoscale; 2012 Aug; 4(15):4578-86. PubMed ID: 22706725
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Carbon nanotube aqueous sol-gel composites: enzyme-friendly platforms for the development of stable biosensors.
    Gavalas VG; Law SA; Christopher Ball J; Andrews R; Bachas LG
    Anal Biochem; 2004 Jun; 329(2):247-52. PubMed ID: 15158483
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 2D/3D Assemblies of Amine-Functionalized Graphene Silica (Templated) Aerogel for Enhanced CO
    Wang W; Motuzas J; Zhao XS; Diniz da Costa JC
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30391-30400. PubMed ID: 31361456
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Low-Temperature Synthesis of Monolithic Titanium Carbide/Carbon Composite Aerogel.
    Niu T; Zhou B; Zhang Z; Ji X; Yang J; Xie Y; Wang H; Du A
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33339289
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hierarchical Porous Magnetite Structures: From Nanoparticle Assembly to Monolithic Aerogels.
    Anastasova EI; Belyaeva AA; Tsymbal SA; Vinnik DA; Vinogradov VV
    J Colloid Interface Sci; 2022 Jun; 615():206-214. PubMed ID: 35131501
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores.
    Xu Z; Zhang Y; Li P; Gao C
    ACS Nano; 2012 Aug; 6(8):7103-13. PubMed ID: 22799441
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black.
    Ma PC; Liu MY; Zhang H; Wang SQ; Wang R; Wang K; Wong YK; Tang BZ; Hong SH; Paik KW; Kim JK
    ACS Appl Mater Interfaces; 2009 May; 1(5):1090-6. PubMed ID: 20355896
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Resistive Response of Carbon Nanotube-Based Composites Subjected to Water Aging.
    Guadagno L; Vertuccio L
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578499
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of graphene-nanoplatelets on gelation and structural integrity of a polyvinyltrimethoxysilane-based aerogel.
    Karamikamkar S; Abidli A; Behzadfar E; Rezaei S; Naguib HE; Park CB
    RSC Adv; 2019 Apr; 9(20):11503-11520. PubMed ID: 35520268
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dielectric behavior of ceramic-graphene composites around the percolation threshold.
    Fernández-García L; Suárez M; Menéndez JL; Pecharromán C; Menéndez R; Santamaría R
    Nanoscale Res Lett; 2015; 10():216. PubMed ID: 25995713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.