These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 23927089)

  • 1. The influence of glottal cross-section shape on theoretical flow models.
    Wu B; Van Hirtum A; Pelorson X; Luo X
    J Acoust Soc Am; 2013 Aug; 134(2):909-12. PubMed ID: 23927089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical simulation and experimental validation of inverse quasi-one-dimensional steady and unsteady glottal flow models.
    Cisonni J; Van Hirtum A; Pelorson X; Willems J
    J Acoust Soc Am; 2008 Jul; 124(1):535-45. PubMed ID: 18646996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voice production model integrating boundary-layer analysis of glottal flow and source-filter coupling.
    Kaburagi T
    J Acoust Soc Am; 2011 Mar; 129(3):1554-67. PubMed ID: 21428519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscous effects in a static physical model of the uniform glottis.
    Fulcher LP; Scherer RC; Powell T
    J Acoust Soc Am; 2013 Aug; 134(2):1253-60. PubMed ID: 23927123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct-numerical simulation of the glottal jet and vocal-fold dynamics in a three-dimensional laryngeal model.
    Zheng X; Mittal R; Xue Q; Bielamowicz S
    J Acoust Soc Am; 2011 Jul; 130(1):404-15. PubMed ID: 21786908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of glottal cross-section shape on phonation onset.
    Van Hirtum A; Wu B; Pelorson X; Lucero J
    J Acoust Soc Am; 2014 Aug; 136(2):853-8. PubMed ID: 25096118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evaluation of inverse filtering using physical systems with known glottal flow and tract characteristics.
    Chu DT; Li K; Epps J; Smith J; Wolfe J
    J Acoust Soc Am; 2013 May; 133(5):EL358-62. PubMed ID: 23656094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional vocal tracts with three-dimensional behavior in the numerical generation of vowels.
    Arnela M; Guasch O
    J Acoust Soc Am; 2014 Jan; 135(1):369-79. PubMed ID: 24437777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of temporal variations in phonatory flow.
    Krane MH; Barry M; Wei T
    J Acoust Soc Am; 2010 Jul; 128(1):372-83. PubMed ID: 20649231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of glottic aperture on the tracheal flow.
    Brouns M; Verbanck S; Lacor C
    J Biomech; 2007; 40(1):165-72. PubMed ID: 16403504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental investigation of the influence of a posterior gap on glottal flow and sound.
    Park JB; Mongeau L
    J Acoust Soc Am; 2008 Aug; 124(2):1171-9. PubMed ID: 18681605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-dimensional models of the glottal flow incorporating viscous-inviscid interaction.
    Kaburagi T; Tanabe Y
    J Acoust Soc Am; 2009 Jan; 125(1):391-404. PubMed ID: 19173426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsteady behavior of flow in a scaled-up vocal folds model.
    Krane M; Barry M; Wei T
    J Acoust Soc Am; 2007 Dec; 122(6):3659-70. PubMed ID: 18247773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental validation of quasi-one-dimensional and two-dimensional steady glottal flow models.
    Cisonni J; Van Hirtum A; Luo XY; Pelorson X
    Med Biol Eng Comput; 2010 Sep; 48(9):903-10. PubMed ID: 20556662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of flow separation location on phonation onset.
    Zhang Z
    J Acoust Soc Am; 2008 Sep; 124(3):1689-94. PubMed ID: 19045659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of three-dimensional glottal geometry on intraglottal quasi-steady flow distributions and their relationship with phonation.
    Li S; Scherer RC; Wan M; Wang S
    Sci China C Life Sci; 2006 Feb; 49(1):82-8. PubMed ID: 16544579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional nature of the glottal jet.
    Triep M; Brücker C
    J Acoust Soc Am; 2010 Mar; 127(3):1537-47. PubMed ID: 20329854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraglottal pressures in a three-dimensional model with a non-rectangular glottal shape.
    Scherer RC; Torkaman S; Kucinschi BR; Afjeh AA
    J Acoust Soc Am; 2010 Aug; 128(2):828-38. PubMed ID: 20707452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entrance loss coefficients and exit coefficients for a physical model of the glottis with convergent angles.
    Fulcher LP; Scherer RC; Anderson NV
    J Acoust Soc Am; 2014 Sep; 136(3):1312. PubMed ID: 25190404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.