These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 23927193)

  • 1. Ultrasound thermal mapping based on a hybrid method combining cross-correlation and zero-crossing tracking.
    Huang CW; Lien DH; Chen BT; Shieh J; Tsui PH; Chen CS; Chen WS
    J Acoust Soc Am; 2013 Aug; 134(2):1530-40. PubMed ID: 23927193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes.
    Karwat P; Kujawska T; Lewin PA; Secomski W; Gambin B; Litniewski J
    Ultrasonics; 2016 Feb; 65():211-9. PubMed ID: 26498063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calibration and Evaluation of Ultrasound Thermography Using Infrared Imaging.
    Hsiao YS; Deng CX
    Ultrasound Med Biol; 2016 Feb; 42(2):503-17. PubMed ID: 26547634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Instantaneous frequency-based ultrasonic temperature estimation during focused ultrasound thermal therapy.
    Liu HL; Li ML; Shih TC; Huang SM; Lu IY; Lin DY; Lin SM; Ju KC
    Ultrasound Med Biol; 2009 Oct; 35(10):1647-61. PubMed ID: 19643529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound thermal mapping based on a hybrid method combining physical and statistical models.
    Chen BT; Shieh J; Huang CW; Chen WS; Chen SR; Chen CS
    Ultrasound Med Biol; 2014 Jan; 40(1):115-29. PubMed ID: 24210856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the possibility of non-invasive multilayer temperature estimation using soft-computing methods.
    Teixeira CA; Pereira WC; Ruano AE; Ruano MG
    Ultrasonics; 2010 Jan; 50(1):32-43. PubMed ID: 19695653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time monitoring of high-intensity focused ultrasound thermal therapy using the manifold learning method.
    Rangraz P; Behnam H; Sobhebidari P; Tavakkoli J
    Ultrasound Med Biol; 2014 Dec; 40(12):2841-50. PubMed ID: 25438863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High frame rate ultrasound monitoring of high intensity focused ultrasound-induced temperature changes: a novel asynchronous approach.
    Liu HL; Huang SM; Li ML
    Med Phys; 2010 Nov; 37(11):5921-8. PubMed ID: 21158305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasive estimation of tissue temperature via high-resolution spectral analysis techniques.
    Amini AN; Ebbini ES; Georgiou TT
    IEEE Trans Biomed Eng; 2005 Feb; 52(2):221-8. PubMed ID: 15709659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo T2 -based MR thermometry in adipose tissue layers for high-intensity focused ultrasound near-field monitoring.
    Baron P; Ries M; Deckers R; de Greef M; Tanttu J; Köhler M; Viergever MA; Moonen CT; Bartels LW
    Magn Reson Med; 2014 Oct; 72(4):1057-64. PubMed ID: 24259459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reference-free PRFS MR-thermometry using near-harmonic 2-D reconstruction of the background phase.
    Salomir R; Viallon M; Kickhefel A; Roland J; Morel DR; Petrusca L; Auboiroux V; Goget T; Terraz S; Becker CD; Gross P
    IEEE Trans Med Imaging; 2012 Feb; 31(2):287-301. PubMed ID: 21937345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive temperature estimation using sonographic digital images.
    Abolhassani MD; Norouzy A; Takavar A; Ghanaati H
    J Ultrasound Med; 2007 Feb; 26(2):215-22. PubMed ID: 17255183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive temperature estimation based on the energy of backscattered ultrasound.
    Arthur RM; Straube WL; Starman JD; Moros EG
    Med Phys; 2003 Jun; 30(6):1021-9. PubMed ID: 12852524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time calibration of temperature estimates during radiofrequency ablation.
    Varghese T; Daniels MJ
    Ultrason Imaging; 2004 Jul; 26(3):185-200. PubMed ID: 15754799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-invasive ultrasound-based temperature imaging for monitoring radiofrequency heating-phantom results.
    Daniels MJ; Varghese T; Madsen EL; Zagzebski JA
    Phys Med Biol; 2007 Aug; 52(16):4827-43. PubMed ID: 17671338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring of thermal therapy based on shear modulus changes: I. shear wave thermometry.
    Arnal B; Pernot M; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):369-78. PubMed ID: 21342822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive ultrasound temperature imaging for monitoring radiofrequency ablation.
    Liu YD; Li Q; Zhou Z; Yeah YW; Chang CC; Lee CY; Tsui PH
    PLoS One; 2017; 12(8):e0182457. PubMed ID: 28837584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calibration of ultrasound backscatter temperature imaging for high-intensity focused ultrasound treatment planning.
    Civale J; Rivens I; Ter Haar G; Morris H; Coussios C; Friend P; Bamber J
    Ultrasound Med Biol; 2013 Sep; 39(9):1596-612. PubMed ID: 23830100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correction of proton resonance frequency shift MR-thermometry errors caused by heat-induced magnetic susceptibility changes during high intensity focused ultrasound ablations in tissues containing fat.
    Baron P; Deckers R; de Greef M; Merckel LG; Bakker CJ; Bouwman JG; Bleys RL; van den Bosch MA; Bartels LW
    Magn Reson Med; 2014 Dec; 72(6):1580-9. PubMed ID: 24347129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A performance analysis of echographic ultrasonic techniques for non-invasive temperature estimation in hyperthermia range using phantoms with scatterers.
    Bazán I; Vazquez M; Ramos A; Vera A; Leija L
    Ultrasonics; 2009 Mar; 49(3):358-76. PubMed ID: 19100591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.