BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 23927202)

  • 1. Investigation on the inertial cavitation threshold and shell properties of commercialized ultrasound contrast agent microbubbles.
    Guo X; Li Q; Zhang Z; Zhang D; Tu J
    J Acoust Soc Am; 2013 Aug; 134(2):1622-31. PubMed ID: 23927202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro contrast-enhanced ultrasound measurements of capillary microcirculation: comparison between polymer- and phospholipid-shelled microbubbles.
    Grishenkov D; Kari L; Brodin LK; Brismar TB; Paradossi G
    Ultrasonics; 2011 Jan; 51(1):40-8. PubMed ID: 20542310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of temperature on the acoustic response and stability of size-isolated protein-shelled ultrasound contrast agents and SonoVue.
    Kaushik A; Khan AH; Pratibha ; Dalvi SV; Shekhar H
    J Acoust Soc Am; 2023 Apr; 153(4):2324. PubMed ID: 37092939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic Characterization and Enhanced Ultrasound Imaging of Long-Circulating Lipid-Coated Microbubbles.
    Li H; Yang Y; Zhang M; Yin L; Tu J; Guo X; Zhang D
    J Ultrasound Med; 2018 May; 37(5):1243-1256. PubMed ID: 29127707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity.
    Li Q; Matula TJ; Tu J; Guo X; Zhang D
    Phys Med Biol; 2013 Feb; 58(4):985-98. PubMed ID: 23339902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast 2-dimensional image monitoring and array-based passive cavitation detection for ultrasound contrast agent destruction in a variably sized region.
    Xu S; Hu H; Jiang H; Xu Z; Wan M
    J Ultrasound Med; 2014 Nov; 33(11):1957-70. PubMed ID: 25336483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial cavitation threshold of nested microbubbles.
    Wallace N; Dicker S; Lewin P; Wrenn SP
    Ultrasonics; 2015 Apr; 58():67-74. PubMed ID: 25620709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between cavitation and loss of echogenicity from ultrasound contrast agents.
    Radhakrishnan K; Bader KB; Haworth KJ; Kopechek JA; Raymond JL; Huang SL; McPherson DD; Holland CK
    Phys Med Biol; 2013 Sep; 58(18):6541-63. PubMed ID: 24002637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal evolution of cavitation dynamics exhibited by flowing microbubbles during ultrasound exposure.
    Choi JJ; Coussios CC
    J Acoust Soc Am; 2012 Nov; 132(5):3538-49. PubMed ID: 23145633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harmonic responses and cavitation activity of encapsulated microbubbles coupled with magnetic nanoparticles.
    Gu Y; Chen C; Tu J; Guo X; Wu H; Zhang D
    Ultrason Sonochem; 2016 Mar; 29():309-16. PubMed ID: 26585011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical microbubble dynamics in a viscoelastic medium at capillary breaching thresholds.
    Patterson B; Miller DL; Johnsen E
    J Acoust Soc Am; 2012 Dec; 132(6):3770-7. PubMed ID: 23231107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chirp resonance spectroscopy of single lipid-coated microbubbles using an "acoustical camera".
    Renaud G; Bosch JG; van der Steen AF; de Jong N
    J Acoust Soc Am; 2012 Dec; 132(6):EL470-5. PubMed ID: 23231210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of laboratory Ultrasound Contrast Agents.
    Park J; Park D; Shin U; Moon S; Kim C; Kim HS; Park H; Choi K; Jung B; Oh J; Seo J
    Molecules; 2013 Oct; 18(10):13078-95. PubMed ID: 24152677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling non-spherical oscillations and stability of acoustically driven shelled microbubbles.
    Loughran J; Eckersley RJ; Tang MX
    J Acoust Soc Am; 2012 Jun; 131(6):4349-57. PubMed ID: 22712909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of fragmentation on the acoustic response from shrinking bubbles.
    Bevan PD; Karshafian R; Burns PN
    Ultrasound Med Biol; 2008 Jul; 34(7):1152-62. PubMed ID: 18343022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inertial cavitation dose produced in ex vivo rabbit ear arteries with Optison by 1-MHz pulsed ultrasound.
    Tu J; Matula TJ; Brayman AA; Crum LA
    Ultrasound Med Biol; 2006 Feb; 32(2):281-8. PubMed ID: 16464673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimisation of the transmit beam parameters for generation of subharmonic signals in native and altered populations of a commercial microbubble contrast agent SonoVue®.
    Ivory AM; Meaney JF; Fagan AJ; Browne JE
    Phys Med; 2020 Feb; 70():176-183. PubMed ID: 32036334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-speed optical observations and simulation results of SonoVue microbubbles at low-pressure insonation.
    Chetty K; Stride E; Sennoga CA; Hajnal JV; Eckersley RJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1333-42. PubMed ID: 18599421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of bubble shell nonlinearity on ultrasound nonlinear propagation through microbubble populations.
    Tang MX; Loughran J; Stride E; Zhang D; Eckersley RJ
    J Acoust Soc Am; 2011 Mar; 129(3):EL76-82. PubMed ID: 21428471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intravascular inertial cavitation activity detection and quantification in vivo with Optison.
    Tu J; Hwang JH; Matula TJ; Brayman AA; Crum LA
    Ultrasound Med Biol; 2006 Oct; 32(10):1601-9. PubMed ID: 17045881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.