These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 23927233)

  • 1. A higher-order tangent linear parabolic-equation solution of three-dimensional sound propagation.
    Lin YT
    J Acoust Soc Am; 2013 Aug; 134(2):EL251-7. PubMed ID: 23927233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A higher-order split-step Fourier parabolic-equation sound propagation solution scheme.
    Lin YT; Duda TF
    J Acoust Soc Am; 2012 Aug; 132(2):EL61-7. PubMed ID: 22894317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-dimensional parabolic equation model of sound propagation using higher-order operator splitting and Padé approximants.
    Lin YT; Collis JM; Duda TF
    J Acoust Soc Am; 2012 Nov; 132(5):EL364-70. PubMed ID: 23145696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global boundary flattening transforms for acoustic propagation under rough sea surfaces.
    Oba RM
    J Acoust Soc Am; 2010 Jul; 128(1):39-49. PubMed ID: 20649199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparisons of laboratory scale measurements of three-dimensional acoustic propagation with solutions by a parabolic equation model.
    Sturm F; Korakas A
    J Acoust Soc Am; 2013 Jan; 133(1):108-18. PubMed ID: 23297887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unmitigated numerical solution to the diffraction term in the parabolic nonlinear ultrasound wave equation.
    Hasani MH; Gharibzadeh S; Farjami Y; Tavakkoli J
    J Acoust Soc Am; 2013 Sep; 134(3):1775-90. PubMed ID: 23967912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation.
    Dagrau F; Rénier M; Marchiano R; Coulouvrat F
    J Acoust Soc Am; 2011 Jul; 130(1):20-32. PubMed ID: 21786874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Information and linearity of time-domain complex demodulated amplitude and phase data in shallow water.
    Sarkar J; Cornuelle BD; Kuperman WA
    J Acoust Soc Am; 2011 Sep; 130(3):1242-52. PubMed ID: 21895067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parabolic equation modeling of high frequency acoustic transmission with an evolving sea surface.
    Senne J; Song A; Badiey M; Smith KB
    J Acoust Soc Am; 2012 Sep; 132(3):1311-8. PubMed ID: 22978859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computationally efficient parabolic equation solutions to seismo-acoustic problems involving thin or low-shear elastic layers.
    Metzler AM; Collis JM
    J Acoust Soc Am; 2013 Apr; 133(4):EL268-73. PubMed ID: 23556690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The extended Fourier pseudospectral time-domain method for atmospheric sound propagation.
    Hornikx M; Waxler R; Forssén J
    J Acoust Soc Am; 2010 Oct; 128(4):1632-46. PubMed ID: 20968336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational fluid dynamics simulation of sound propagation through a blade row.
    Zhao L; Qiao W; Ji L
    J Acoust Soc Am; 2012 Oct; 132(4):2210-7. PubMed ID: 23039417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic analysis of a rectangular cavity with general impedance boundary conditions.
    Du JT; Li WL; Liu ZG; Xu HA; Ji ZL
    J Acoust Soc Am; 2011 Aug; 130(2):807-17. PubMed ID: 21877796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-range asymptotic behavior of vertical travel-time sensitivity kernels.
    Skarsoulis EK; Cornuelle BD; Dzieciuch MA
    J Acoust Soc Am; 2013 Oct; 134(4):3201-10. PubMed ID: 24116516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian.
    Treeby BE; Cox BT
    J Acoust Soc Am; 2010 May; 127(5):2741-48. PubMed ID: 21117722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Focused sound from three-dimensional sound propagation effects over a submarine canyon.
    Chiu LY; Lin YT; Chen CF; Duda TF; Calder B
    J Acoust Soc Am; 2011 Jun; 129(6):EL260-6. PubMed ID: 21682362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range.
    Duda TF; Lin YT; Reeder DB
    J Acoust Soc Am; 2011 Sep; 130(3):1173-87. PubMed ID: 21895060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic parabolic equation solutions for underwater acoustic problems using seismic sources.
    Frank SD; Odom RI; Collis JM
    J Acoust Soc Am; 2013 Mar; 133(3):1358-67. PubMed ID: 23464007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sparse-representation algorithms for blind estimation of acoustic-multipath channels.
    Zeng WJ; Jiang X; So HC
    J Acoust Soc Am; 2013 Apr; 133(4):2191-7. PubMed ID: 23556588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical modeling of the sound propagation through a rarefied gas in a semi-infinite space on the basis of linearized kinetic equation.
    Sharipov F; Kalempa D
    J Acoust Soc Am; 2008 Oct; 124(4):1993-2001. PubMed ID: 19062839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.