These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
610 related articles for article (PubMed ID: 23927250)
1. The accuracy of the Gaussian-and-finite-element-Coulomb (GFC) method for the calculation of Coulomb integrals. Przybytek M; Helgaker T J Chem Phys; 2013 Aug; 139(5):054114. PubMed ID: 23927250 [TBL] [Abstract][Full Text] [Related]
2. Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method. Kurashige Y; Nakajima T; Sato T; Hirao K J Chem Phys; 2010 Jun; 132(24):244107. PubMed ID: 20590181 [TBL] [Abstract][Full Text] [Related]
3. Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals. Kurashige Y; Nakajima T; Hirao K J Chem Phys; 2007 Apr; 126(14):144106. PubMed ID: 17444700 [TBL] [Abstract][Full Text] [Related]
10. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry. Nakatsuji H Acc Chem Res; 2012 Sep; 45(9):1480-90. PubMed ID: 22686372 [TBL] [Abstract][Full Text] [Related]
11. Optimization of selected molecular orbitals in group basis sets. Ferenczy GG; Adams WH J Chem Phys; 2009 Apr; 130(13):134108. PubMed ID: 19355718 [TBL] [Abstract][Full Text] [Related]
12. A divide and conquer real space finite-element Hartree-Fock method. Alizadegan R; Hsia KJ; Martinez TJ J Chem Phys; 2010 Jan; 132(3):034101. PubMed ID: 20095722 [TBL] [Abstract][Full Text] [Related]
13. An efficient and near linear scaling pair natural orbital based local coupled cluster method. Riplinger C; Neese F J Chem Phys; 2013 Jan; 138(3):034106. PubMed ID: 23343267 [TBL] [Abstract][Full Text] [Related]
14. Energy and energy gradient matrix elements with N-particle explicitly correlated complex Gaussian basis functions with L=1. Bubin S; Adamowicz L J Chem Phys; 2008 Mar; 128(11):114107. PubMed ID: 18361554 [TBL] [Abstract][Full Text] [Related]
15. Finite-size scaling for quantum criticality using the finite-element method. Antillon E; Wehefritz-Kaufmann B; Kais S Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036706. PubMed ID: 22587208 [TBL] [Abstract][Full Text] [Related]
16. Variational and robust density fitting of four-center two-electron integrals in local metrics. Reine S; Tellgren E; Krapp A; Kjaergaard T; Helgaker T; Jansik B; Host S; Salek P J Chem Phys; 2008 Sep; 129(10):104101. PubMed ID: 19044902 [TBL] [Abstract][Full Text] [Related]
17. Basis set construction for molecular electronic structure theory: natural orbital and Gauss-Slater basis for smooth pseudopotentials. Petruzielo FR; Toulouse J; Umrigar CJ J Chem Phys; 2011 Feb; 134(6):064104. PubMed ID: 21322658 [TBL] [Abstract][Full Text] [Related]
18. An accurate relativistic universal Gaussian basis set for hydrogen through Nobelium without variational prolapse and to be used with both uniform sphere and Gaussian nucleus models. Haiduke RL; De Macedo LG; Da Silva AB J Comput Chem; 2005 Jul; 26(9):932-40. PubMed ID: 15841472 [TBL] [Abstract][Full Text] [Related]
19. Linear-scaling calculation of static and dynamic polarizabilities in Hartree-Fock and density functional theory for periodic systems. Izmaylov AF; Brothers EN; Scuseria GE J Chem Phys; 2006 Dec; 125(22):224105. PubMed ID: 17176132 [TBL] [Abstract][Full Text] [Related]
20. Efficient evaluation of analytic vibrational frequencies in Hartree-Fock and density functional theory for periodic nonconducting systems. Izmaylov AF; Scuseria GE J Chem Phys; 2007 Oct; 127(14):144106. PubMed ID: 17935385 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]