These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 23927259)

  • 21. Octupolar polycyclic aromatic hydrocarbons as new two-photon absorption chromophores: synthesis and application for optical power limiting.
    Zeng Z; Guan Z; Xu QH; Wu J
    Chemistry; 2011 Mar; 17(14):3837-41. PubMed ID: 21416491
    [No Abstract]   [Full Text] [Related]  

  • 22. Diode laser based studies of the UV photolysis of molecular iodine.
    Hancock G; Richmond G; Ritchie GA; Taylor S
    Phys Chem Chem Phys; 2009 Aug; 11(30):6415-23. PubMed ID: 19809673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two-photon and UV-laser flash photolysis of the Ca2+ cage, dimethoxynitrophenyl-EGTA-4.
    DelPrincipe F; Egger M; Ellis-Davies GC; Niggli E
    Cell Calcium; 1999 Jan; 25(1):85-91. PubMed ID: 10191963
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigations into a novel method for atmospheric polycyclic aromatic hydrocarbon monitoring.
    Forbes PB; Rohwer ER
    Environ Pollut; 2009; 157(8-9):2529-35. PubMed ID: 19345458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Occurrence of gaseous and particulate polycyclic aromatic hydrocarbons in the urban atmosphere: study of sources and ambient temperature effect on the gas/particle concentration and distribution.
    Tsapakis M; Stephanou EG
    Environ Pollut; 2005 Jan; 133(1):147-56. PubMed ID: 15327865
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling and prediction of photolysis half-lives of polycyclic aromatic hydrocarbons in aerosols by quantum chemical descriptors.
    Lu GN; Dang Z; Tao XQ; Yang C; Yi XY
    Sci Total Environ; 2007 Feb; 373(1):289-96. PubMed ID: 17173954
    [TBL] [Abstract][Full Text] [Related]  

  • 27. All-carbon, neutral analogue of ExBox4+: A DFT study of polycyclic aromatic hydrocarbon binding.
    Bachrach SM; Andrews AE
    J Phys Chem A; 2014 Aug; 118(31):6104-11. PubMed ID: 25029611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Behavior and prediction of photochemical degradation of chlorinated polycyclic aromatic hydrocarbons in cyclohexane.
    Ohura T; Amagai T; Makino M
    Chemosphere; 2008 Feb; 70(11):2110-7. PubMed ID: 17936329
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electron-accepting potential of solvents determines photolysis rates of polycyclic aromatic hydrocarbons: experimental and density functional theory study.
    Shao J; Chen J; Xie Q; Wang Y; Li X; Hao C
    J Hazard Mater; 2010 Jul; 179(1-3):173-7. PubMed ID: 20303660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Watson-Crick and sugar-edge base pairing of cytosine in the gas phase: UV and infrared spectra of cytosine·2-pyridone.
    Frey JA; Ottiger P; Leutwyler S
    J Phys Chem B; 2014 Jan; 118(3):682-91. PubMed ID: 24383817
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of UV-B on the degradation of PCDD/Fs and PAHs sorbed on surfaces of spruce (Picea abies (L.) Karst.) needles.
    Niu J; Chen J; Martens D; Henkelmann B; Quan X; Yang F; Seidlitz HK; Schramm KW
    Sci Total Environ; 2004 Apr; 322(1-3):231-41. PubMed ID: 15081751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gas-particle concentration and distribution of n-alkanes and polycyclic aromatic hydrocarbons in the atmosphere of Prato (Italy).
    Cincinelli A; Bubba MD; Martellini T; Gambaro A; Lepri L
    Chemosphere; 2007 Jun; 68(3):472-8. PubMed ID: 17307224
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Desorption of polycyclic aromatic hydrocarbons from a soot surface: three- to five-ring PAHs.
    Guilloteau A; Bedjanian Y; Nguyen ML; Tomas A
    J Phys Chem A; 2010 Jan; 114(2):942-8. PubMed ID: 19925003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct photolysis of polycyclic aromatic hydrocarbons in drinking water sources.
    Sanches S; Leitão C; Penetra A; Cardoso VV; Ferreira E; Benoliel MJ; Crespo MT; Pereira VJ
    J Hazard Mater; 2011 Sep; 192(3):1458-65. PubMed ID: 21784577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reactive uptake of NO3, N2O5, NO2, HNO3, and O3 on three types of polycyclic aromatic hydrocarbon surfaces.
    Gross S; Bertram AK
    J Phys Chem A; 2008 Apr; 112(14):3104-13. PubMed ID: 18311955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High resolution photofragment translational spectroscopy of the near UV photolysis of indole: dissociation via the 1pi sigma* state.
    Nix MG; Devine AL; Cronin B; Ashfold MN
    Phys Chem Chem Phys; 2006 Jun; 8(22):2610-8. PubMed ID: 16738714
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of derivatization on solar-induced decomposition of polycyclic aromatic hydrocarbons in aqueous media.
    Fujiwara K; Ishige Y; Inoue Y; Taigo S; Sasaki T; Aoki M; Shirasaki H; Furuno M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Feb; 42(3):225-30. PubMed ID: 17365288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Atmospheric chemistry of 2,3-pentanedione: photolysis and reaction with OH radicals.
    Szabó E; Djehiche M; Riva M; Fittschen C; Coddeville P; Sarzyński D; Tomas A; Dóbé S
    J Phys Chem A; 2011 Aug; 115(33):9160-8. PubMed ID: 21786774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atmospheric chemistry of CF3CF2CHO: absorption cross sections in the UV and IR regions, photolysis at 308 nm, and gas-phase reaction with OH radicals (T = 263-358 K).
    Antiñolo M; Jiménez E; González S; Albaladejo J
    J Phys Chem A; 2014 Jan; 118(1):178-86. PubMed ID: 24299449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ direct sampling mass spectrometric study on formation of polycyclic aromatic hydrocarbons in toluene pyrolysis.
    Shukla B; Susa A; Miyoshi A; Koshi M
    J Phys Chem A; 2007 Aug; 111(34):8308-24. PubMed ID: 17685593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.