These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 23927276)

  • 21. Generalized Gibbs' approach in heterogeneous nucleation.
    Abyzov AS; Schmelzer JW
    J Chem Phys; 2013 Apr; 138(16):164504. PubMed ID: 23635154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tests of the homogeneous nucleation theory with molecular-dynamics simulations. I. Lennard-Jones molecules.
    Tanaka KK; Kawamura K; Tanaka H; Nakazawa K
    J Chem Phys; 2005 May; 122(18):184514. PubMed ID: 15918736
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of phase behavior of nanoconfined Lennard-Jones fluids with density functional theory based on the first-order mean spherical approximation.
    Mi J; Tang Y; Zhong C; Li YG
    J Chem Phys; 2006 Apr; 124(14):144709. PubMed ID: 16626233
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Curvature-dependent surface tension of a growing droplet.
    Moody MP; Attard P
    Phys Rev Lett; 2003 Aug; 91(5):056104. PubMed ID: 12906610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Equilibrium sizes and formation energies of small and large Lennard-Jones clusters from molecular dynamics: a consistent comparison to Monte Carlo simulations and density functional theories.
    Julin J; Napari I; Merikanto J; Vehkamäki H
    J Chem Phys; 2008 Dec; 129(23):234506. PubMed ID: 19102537
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nucleation and growth of droplets at a liquid-gas interface.
    Nepomnyashchy AA; Golovin AA; Tikhomirova AE; Volpert VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021605. PubMed ID: 17025444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal nucleation and the solid-liquid interfacial free energy.
    Baidakov VG; Tipeev AO
    J Chem Phys; 2012 Feb; 136(7):074510. PubMed ID: 22360251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular dynamics simulations of nucleation from vapor to solid composed of Lennard-Jones molecules.
    Tanaka KK; Tanaka H; Yamamoto T; Kawamura K
    J Chem Phys; 2011 May; 134(20):204313. PubMed ID: 21639446
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface induced nucleation of a Lennard-Jones system on an implicit surface at sub-freezing temperatures: a comparison with the classical nucleation theory.
    Loeffler TD; Chen B
    J Chem Phys; 2013 Dec; 139(23):234707. PubMed ID: 24359386
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels.
    Wu C; Xu X; Qian T
    J Phys Condens Matter; 2013 May; 25(19):195103. PubMed ID: 23552493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modification of the classical nucleation theory based on molecular simulation data for surface tension, critical nucleus size, and nucleation rate.
    Horsch M; Vrabec J; Hasse H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011603. PubMed ID: 18763964
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamic investigation of the barrier for heterogeneous nucleation on a fluid surface in comparison with a rigid surface.
    Eslami F; Elliott JA
    J Phys Chem B; 2011 Sep; 115(36):10646-53. PubMed ID: 21736344
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How nanoscale seed particles affect vapor-liquid nucleation.
    Liu Y; Men Y; Zhang X
    J Chem Phys; 2011 Nov; 135(18):184701. PubMed ID: 22088072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-step vapor-crystal nucleation close below triple point.
    van Meel JA; Page AJ; Sear RP; Frenkel D
    J Chem Phys; 2008 Nov; 129(20):204505. PubMed ID: 19045871
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic theory of heterogeneous nucleation; effect of nonuniform density in the nuclei.
    Berim GO; Ruckenstein E
    J Colloid Interface Sci; 2011 Mar; 355(1):259-64. PubMed ID: 21190692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wetting behavior of spherical nanoparticles at a vapor-liquid interface: a density functional theory study.
    Zeng M; Mi J; Zhong C
    Phys Chem Chem Phys; 2011 Mar; 13(9):3932-41. PubMed ID: 21212890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cooperative effect in nucleation: nanosized seed particles jointly nucleate vapor-liquid transitions.
    Guo Q; Liu Y; Jiang G; Zhang X
    J Chem Phys; 2013 Jun; 138(21):214701. PubMed ID: 23758389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoparticle growth analysis by molecular dynamics: cubic seed.
    Suh D; Yasuoka K
    J Phys Chem B; 2012 Dec; 116(50):14637-49. PubMed ID: 23134412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.