These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23927440)

  • 1. The toxicity, transport and uptake of nanoparticles in the in vitro BeWo b30 placental cell barrier model used within NanoTEST.
    Correia Carreira S; Walker L; Paul K; Saunders M
    Nanotoxicology; 2015 May; 9 Suppl 1():66-78. PubMed ID: 23927440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of silica nanoparticles in the human placenta.
    Poulsen MS; Mose T; Maroun LL; Mathiesen L; Knudsen LE; Rytting E
    Nanotoxicology; 2015 May; 9 Suppl 1(0 1):79-86. PubMed ID: 23742169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translocation of positively and negatively charged polystyrene nanoparticles in an in vitro placental model.
    Kloet SK; Walczak AP; Louisse J; van den Berg HH; Bouwmeester H; Tromp P; Fokkink RG; Rietjens IM
    Toxicol In Vitro; 2015 Oct; 29(7):1701-10. PubMed ID: 26145586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of the BeWo b30 placental transport model and the embryonic stem cell test to assess the potential developmental toxicity of silver nanoparticles.
    Abdelkhaliq A; van der Zande M; Peters RJB; Bouwmeester H
    Part Fibre Toxicol; 2020 Mar; 17(1):11. PubMed ID: 32156294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of an in vitro transport model using BeWo b30 cells to predict placental transfer of compounds.
    Li H; van Ravenzwaay B; Rietjens IM; Louisse J
    Arch Toxicol; 2013 Sep; 87(9):1661-9. PubMed ID: 23689295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake and transport of pullulan acetate nanoparticles in the BeWo b30 placental barrier cell model.
    Tang H; Jiang Z; He H; Li X; Hu H; Zhang N; Dai Y; Zhou Z
    Int J Nanomedicine; 2018; 13():4073-4082. PubMed ID: 30034233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relevance to investigate different stages of pregnancy to highlight toxic effects of nanoparticles: The example of silica.
    Pietroiusti A; Vecchione L; Malvindi MA; Aru C; Massimiani M; Camaioni A; Magrini A; Bernardini R; Sabella S; Pompa PP; Campagnolo L
    Toxicol Appl Pharmacol; 2018 Mar; 342():60-68. PubMed ID: 29407774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro placental model optimization for nanoparticle transport studies.
    Cartwright L; Poulsen MS; Nielsen HM; Pojana G; Knudsen LE; Saunders M; Rytting E
    Int J Nanomedicine; 2012; 7():497-510. PubMed ID: 22334780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models.
    Aengenheister L; Dugershaw BB; Manser P; Wichser A; Schoenenberger R; Wick P; Hesler M; Kohl Y; Straskraba S; Suter MJ; Buerki-Thurnherr T
    Eur J Pharm Biopharm; 2019 Sep; 142():488-497. PubMed ID: 31330257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoparticle distribution in advanced in vitro and ex vivo human placental barrier models.
    Aengenheister L; Dietrich D; Sadeghpour A; Manser P; Diener L; Wichser A; Karst U; Wick P; Buerki-Thurnherr T
    J Nanobiotechnology; 2018 Oct; 16(1):79. PubMed ID: 30309365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An advanced human in vitro co-culture model for translocation studies across the placental barrier.
    Aengenheister L; Keevend K; Muoth C; Schönenberger R; Diener L; Wick P; Buerki-Thurnherr T
    Sci Rep; 2018 Mar; 8(1):5388. PubMed ID: 29599470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amorphous silica coatings on magnetic nanoparticles enhance stability and reduce toxicity to in vitro BEAS-2B cells.
    Baber O; Jang M; Barber D; Powers K
    Inhal Toxicol; 2011 Aug; 23(9):532-43. PubMed ID: 21819260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studying placental transfer of highly purified non-dioxin-like PCBs in two models of the placental barrier.
    Correia Carreira S; Cartwright L; Mathiesen L; Knudsen LE; Saunders M
    Placenta; 2011 Mar; 32(3):283-91. PubMed ID: 21236486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle transport across the placental barrier: pushing the field forward!
    Muoth C; Aengenheister L; Kucki M; Wick P; Buerki-Thurnherr T
    Nanomedicine (Lond); 2016 Apr; 11(8):941-57. PubMed ID: 26979802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Impedance Spectroscopy and Transcriptome Analysis of Choriocarcinoma BeWo b30 as a Model of Human Placenta].
    Nikulin SV; Knyazev EN; Gerasimenko TN; Shilin SA; Gazizov IN; Zakharova GS; Poloznikov AA; Sakharov DA
    Mol Biol (Mosk); 2019; 53(3):467-475. PubMed ID: 31184612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunogold labeling reveals subcellular localisation of silica nanoparticles in a human blood-brain barrier model.
    Ye D; Anguissola S; O'Neill T; Dawson KA
    Nanoscale; 2015 Jun; 7(22):10050-8. PubMed ID: 25975182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake kinetics and nanotoxicity of silica nanoparticles are cell type dependent.
    Blechinger J; Bauer AT; Torrano AA; Gorzelanny C; Bräuchle C; Schneider SW
    Small; 2013 Dec; 9(23):3970-80, 3906. PubMed ID: 23681841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High risk of embryo-fetal toxicity: placental transfer of T-2 toxin and its major metabolite HT-2 toxin in BeWo cells.
    Wang X; Wang W; Cheng G; Huang L; Chen D; Tao Y; Pan Y; Hao H; Wu Q; Wan D; Liu Z; Wang Y; Yuan Z
    Toxicol Sci; 2014 Jan; 137(1):168-78. PubMed ID: 24136189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of nanoparticles through the placental barrier.
    Kulvietis V; Zalgeviciene V; Didziapetriene J; Rotomskis R
    Tohoku J Exp Med; 2011 Dec; 225(4):225-34. PubMed ID: 22052087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of digoxin-loaded polymeric nanoparticles across BeWo cells, an in vitro model of human placental trophoblast.
    Albekairi NA; Al-Enazy S; Ali S; Rytting E
    Ther Deliv; 2015; 6(12):1325-34. PubMed ID: 26652279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.