BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 23927738)

  • 21. The role of the fetal fibroblast and transforming growth factor-beta in a model of human fetal wound repair.
    Lin RY; Adzick NS
    Semin Pediatr Surg; 1996 Aug; 5(3):165-74. PubMed ID: 8858763
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An in vivo mouse excisional wound model of scarless healing.
    Colwell AS; Krummel TM; Longaker MT; Lorenz HP
    Plast Reconstr Surg; 2006 Jun; 117(7):2292-6. PubMed ID: 16772931
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ski, a modulator of wound healing and scar formation in the rat skin and rabbit ear.
    Li P; Liu P; Xiong RP; Chen XY; Zhao Y; Lu WP; Liu X; Ning YL; Yang N; Zhou YG
    J Pathol; 2011 Apr; 223(5):659-71. PubMed ID: 21341267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates.
    Seifert AW; Monaghan JR; Voss SR; Maden M
    PLoS One; 2012; 7(4):e32875. PubMed ID: 22485136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of the inflammatory response by increasing fetal wound size or interleukin-10 overexpression determines wound phenotype and scar formation.
    Morris MW; Allukian M; Herdrich BJ; Caskey RC; Zgheib C; Xu J; Dorsett-Martin W; Mitchell ME; Liechty KW
    Wound Repair Regen; 2014; 22(3):406-14. PubMed ID: 24844340
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Embryonic stem cell-derived M2-like macrophages delay cutaneous wound healing.
    Dreymueller D; Denecke B; Ludwig A; Jahnen-Dechent W
    Wound Repair Regen; 2013; 21(1):44-54. PubMed ID: 23126541
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Animal models for adult dermal wound healing.
    Birch M; Tomlinson A; Ferguson MW
    Methods Mol Med; 2005; 117():223-35. PubMed ID: 16118455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of oral mucosa-derived heterotopic fibroblasts on cutaneous wound healing.
    Sezgin B; Tatar S; Karahuseyinoglu S; Sahin GN; Ergun Y; Meric G; Ersoy K
    J Plast Reconstr Aesthet Surg; 2021 Oct; 74(10):2751-2758. PubMed ID: 33935009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A biomechanical model of wound contraction and scar formation.
    Yang L; Witten TM; Pidaparti RM
    J Theor Biol; 2013 Sep; 332():228-48. PubMed ID: 23563057
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phenotypic differences between oral and skin fibroblasts in wound contraction and growth factor expression.
    Shannon DB; McKeown ST; Lundy FT; Irwin CR
    Wound Repair Regen; 2006; 14(2):172-8. PubMed ID: 16630106
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Site-specific production of TGF-beta in oral mucosal and cutaneous wounds.
    Schrementi ME; Ferreira AM; Zender C; DiPietro LA
    Wound Repair Regen; 2008; 16(1):80-6. PubMed ID: 18086295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contractility, transforming growth factor-beta, and plasmin in fetal skin fibroblasts: role in scarless wound healing.
    Coleman C; Tuan TL; Buckley S; Anderson KD; Warburton D
    Pediatr Res; 1998 Mar; 43(3):403-9. PubMed ID: 9505281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strategies for prevention of scars: what can we learn from fetal skin?
    Namazi MR; Fallahzadeh MK; Schwartz RA
    Int J Dermatol; 2011 Jan; 50(1):85-93. PubMed ID: 21039435
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential injury responses in oral mucosal and cutaneous wounds.
    Szpaderska AM; Zuckerman JD; DiPietro LA
    J Dent Res; 2003 Aug; 82(8):621-6. PubMed ID: 12885847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elevated CD26 Expression by Skin Fibroblasts Distinguishes a Profibrotic Phenotype Involved in Scar Formation Compared to Gingival Fibroblasts.
    Mah W; Jiang G; Olver D; Gallant-Behm C; Wiebe C; Hart DA; Koivisto L; Larjava H; Häkkinen L
    Am J Pathol; 2017 Aug; 187(8):1717-1735. PubMed ID: 28641076
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interactions between extracellular matrix and growth factors in wound healing.
    Schultz GS; Wysocki A
    Wound Repair Regen; 2009; 17(2):153-62. PubMed ID: 19320882
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Topical application of the lectin Artin M accelerates wound healing in rat oral mucosa by enhancing TGF-β and VEGF production.
    Kim YJ; Carvalho FC; Souza JA; Gonçalves PC; Nogueira AV; Spolidório LC; Roque-Barreira MC; Cirelli JA
    Wound Repair Regen; 2013; 21(3):456-63. PubMed ID: 23627356
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential use of Erk1/2 and transforming growth factor beta pathways by mid- and late-gestational murine fibroblasts.
    Goldberg SR; Quirk GL; Sykes VW; McKinstry RP; Kordula T; Lanning DA
    J Pediatr Surg; 2008 Jun; 43(6):971-6. PubMed ID: 18558167
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transgenic mice overexpressing CD109 in the epidermis display decreased inflammation and granulation tissue and improved collagen architecture during wound healing.
    Vorstenbosch J; Gallant-Behm C; Trzeciak A; Roy S; Mustoe T; Philip A
    Wound Repair Regen; 2013; 21(2):235-46. PubMed ID: 23438099
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Altered procollagen gene expression in mid-gestational mouse excisional wounds.
    Goldberg SR; Quirk GL; Sykes VW; Kordula T; Lanning DA
    J Surg Res; 2007 Nov; 143(1):27-34. PubMed ID: 17950069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.