These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 23927771)

  • 1. Neurobiology of secure infant attachment and attachment despite adversity: a mouse model.
    Roth TL; Raineki C; Salstein L; Perry R; Sullivan-Wilson TA; Sloan A; Lalji B; Hammock E; Wilson DA; Levitt P; Okutani F; Kaba H; Sullivan RM
    Genes Brain Behav; 2013 Oct; 12(7):673-80. PubMed ID: 23927771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enduring effects of infant memories: infant odor-shock conditioning attenuates amygdala activity and adult fear conditioning.
    Sevelinges Y; Moriceau S; Holman P; Miner C; Muzny K; Gervais R; Mouly AM; Sullivan RM
    Biol Psychiatry; 2007 Nov; 62(10):1070-9. PubMed ID: 17826749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing a neurobehavioral animal model of infant attachment to an abusive caregiver.
    Raineki C; Moriceau S; Sullivan RM
    Biol Psychiatry; 2010 Jun; 67(12):1137-45. PubMed ID: 20163787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adult depression-like behavior, amygdala and olfactory cortex functions are restored by odor previously paired with shock during infant's sensitive period attachment learning.
    Sevelinges Y; Mouly AM; Raineki C; Moriceau S; Forest C; Sullivan RM
    Dev Cogn Neurosci; 2011 Jan; 1(1):77-87. PubMed ID: 21037982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development switch in neural circuitry underlying odor-malaise learning.
    Shionoya K; Moriceau S; Lunday L; Miner C; Roth TL; Sullivan RM
    Learn Mem; 2006; 13(6):801-8. PubMed ID: 17101877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual circuitry for odor-shock conditioning during infancy: corticosterone switches between fear and attraction via amygdala.
    Moriceau S; Wilson DA; Levine S; Sullivan RM
    J Neurosci; 2006 Jun; 26(25):6737-48. PubMed ID: 16793881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Memory of early maltreatment: neonatal behavioral and neural correlates of maternal maltreatment within the context of classical conditioning.
    Roth TL; Sullivan RM
    Biol Psychiatry; 2005 Apr; 57(8):823-31. PubMed ID: 15820702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing a sense of safety: the neurobiology of neonatal attachment.
    Sullivan RM
    Ann N Y Acad Sci; 2003 Dec; 1008():122-31. PubMed ID: 14998878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Norepinephrine and learning-induced plasticity in infant rat olfactory system.
    Sullivan RM; Wilson DA; Leon M
    J Neurosci; 1989 Nov; 9(11):3998-4006. PubMed ID: 2585063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogeny of odor-LiCl vs. odor-shock learning: similar behaviors but divergent ages of functional amygdala emergence.
    Raineki C; Shionoya K; Sander K; Sullivan RM
    Learn Mem; 2009 Feb; 16(2):114-21. PubMed ID: 19181617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rodent model of infant attachment learning and stress.
    Moriceau S; Roth TL; Sullivan RM
    Dev Psychobiol; 2010 Nov; 52(7):651-60. PubMed ID: 20730787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early-life stress disrupts attachment learning: the role of amygdala corticosterone, locus ceruleus corticotropin releasing hormone, and olfactory bulb norepinephrine.
    Moriceau S; Shionoya K; Jakubs K; Sullivan RM
    J Neurosci; 2009 Dec; 29(50):15745-55. PubMed ID: 20016090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning-Dependent and -Independent Enhancement of Mitral/Tufted Cell Glomerular Odor Responses Following Olfactory Fear Conditioning in Awake Mice.
    Ross JM; Fletcher ML
    J Neurosci; 2018 May; 38(20):4623-4640. PubMed ID: 29669746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral and neural correlates of postnatal olfactory conditioning: I. Effect of respiration on conditioned neural responses.
    Sullivan RM; Wilson DA; Kim MH; Leon M
    Physiol Behav; 1988; 44(1):85-90. PubMed ID: 3237818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development and neurobiology of infant attachment and fear.
    Landers MS; Sullivan RM
    Dev Neurosci; 2012; 34(2-3):101-14. PubMed ID: 22571921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial patterns of olfactory bulb single-unit responses to learned olfactory cues in young rats.
    Wilson DA; Leon M
    J Neurophysiol; 1988 Jun; 59(6):1770-82. PubMed ID: 3404204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enduring neurobehavioral effects of early life trauma mediated through learning and corticosterone suppression.
    Moriceau S; Raineki C; Holman JD; Holman JG; Sullivan RM
    Front Behav Neurosci; 2009; 3():22. PubMed ID: 19750195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Olfactory fear conditioning induces field potential potentiation in rat olfactory cortex and amygdala.
    Sevelinges Y; Gervais R; Messaoudi B; Granjon L; Mouly AM
    Learn Mem; 2004; 11(6):761-9. PubMed ID: 15537739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-trial olfactory learning enhances olfactory bulb responses to an appetitive conditioned odor in 7-day-old rats.
    Sullivan RM; Leon M
    Brain Res; 1987 Oct; 432(2):307-11. PubMed ID: 3676845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Norepinephrine-induced plasticity and one-trial olfactory learning in neonatal rats.
    Sullivan RM; McGaugh JL; Leon M
    Brain Res Dev Brain Res; 1991 Jun; 60(2):219-28. PubMed ID: 1654232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.