These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 23927893)
1. Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses. de Castro A; Birkenfeld J; Maceo B; Manns F; Arrieta E; Parel JM; Marcos S Invest Ophthalmol Vis Sci; 2013 Sep; 54(9):6197-207. PubMed ID: 23927893 [TBL] [Abstract][Full Text] [Related]
2. Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism. Birkenfeld J; de Castro A; Ortiz S; Pascual D; Marcos S Vision Res; 2013 Jun; 86():27-34. PubMed ID: 23597582 [TBL] [Abstract][Full Text] [Related]
3. Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses. Birkenfeld J; de Castro A; Marcos S Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2599-607. PubMed ID: 24677101 [TBL] [Abstract][Full Text] [Related]
4. Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher. Maceo Heilman B; Manns F; de Castro A; Durkee H; Arrieta E; Marcos S; Parel JM Invest Ophthalmol Vis Sci; 2015 Feb; 56(3):1743-50. PubMed ID: 25670492 [TBL] [Abstract][Full Text] [Related]
5. Crystalline lens gradient refractive index distribution in the guinea pig. de Castro A; Martinez-Enriquez E; Perez-Merino P; Velasco-Ocaña M; Revuelta L; McFadden S; Marcos S Ophthalmic Physiol Opt; 2020 May; 40(3):308-315. PubMed ID: 32338776 [TBL] [Abstract][Full Text] [Related]
6. Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies. Maceo BM; Manns F; Borja D; Nankivil D; Uhlhorn S; Arrieta E; Ho A; Augusteyn RC; Parel JM J Vis; 2011 Nov; 11(13):23. PubMed ID: 22131444 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging. de Castro A; Ortiz S; Gambra E; Siedlecki D; Marcos S Opt Express; 2010 Oct; 18(21):21905-17. PubMed ID: 20941090 [TBL] [Abstract][Full Text] [Related]
8. Distortion correction of OCT images of the crystalline lens: gradient index approach. Siedlecki D; de Castro A; Gambra E; Ortiz S; Borja D; Uhlhorn S; Manns F; Marcos S; Parel JM Optom Vis Sci; 2012 May; 89(5):E709-18. PubMed ID: 22466105 [TBL] [Abstract][Full Text] [Related]
9. Astigmatism of the Ex Vivo Human Lens: Surface and Gradient Refractive Index Age-Dependent Contributions. Birkenfeld J; de Castro A; Marcos S Invest Ophthalmol Vis Sci; 2015 Aug; 56(9):5067-73. PubMed ID: 26241395 [TBL] [Abstract][Full Text] [Related]
10. Changes in spherical aberration after lens refilling with a silicone oil. Wong KH; Koopmans SA; Terwee T; Kooijman AC Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1261-7. PubMed ID: 17325171 [TBL] [Abstract][Full Text] [Related]
11. Changes in equivalent and gradient refractive index of the crystalline lens with accommodation. Garner LF; Smith G Optom Vis Sci; 1997 Feb; 74(2):114-9. PubMed ID: 9097329 [TBL] [Abstract][Full Text] [Related]
12. Measurement of wavefront aberrations and lens deformation in the accommodated eye with optical coherence tomography-equipped wavefront system. He JC; Wang J Opt Express; 2014 Apr; 22(8):9764-73. PubMed ID: 24787861 [TBL] [Abstract][Full Text] [Related]
13. The change of spherical aberration during accommodation and its effect on the accommodation response. López-Gil N; Fernández-Sánchez V J Vis; 2010 Nov; 10(13):12. PubMed ID: 21075837 [TBL] [Abstract][Full Text] [Related]
14. Refractive index redistribution with accommodation based on finite volume-constant age-dependent mechanical modeling. Jiang MS; Xu XL; Yang T; Zhang XD; Li F Vision Res; 2019 Jul; 160():52-59. PubMed ID: 31095964 [TBL] [Abstract][Full Text] [Related]
15. The Relationship Between High-Order Aberration and Anterior Ocular Biometry During Accommodation in Young Healthy Adults. Ke B; Mao X; Jiang H; He J; Liu C; Li M; Yuan Y; Wang J Invest Ophthalmol Vis Sci; 2017 Nov; 58(13):5628-5635. PubMed ID: 29094166 [TBL] [Abstract][Full Text] [Related]
16. Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro. Moffat BA; Atchison DA; Pope JM Vision Res; 2002 Jun; 42(13):1683-93. PubMed ID: 12079796 [TBL] [Abstract][Full Text] [Related]
17. Relation between injected volume and optical parameters in refilled isolated porcine lenses. Koopmans SA; Terwee T; Haitjema HJ; Deuring H; Aarle S; Kooijman AC Ophthalmic Physiol Opt; 2004 Nov; 24(6):572-9. PubMed ID: 15491485 [TBL] [Abstract][Full Text] [Related]
18. Age-Dependent Changes in the Water Content and Optical Power of the In Vivo Mouse Lens Revealed by Multi-Parametric MRI and Optical Modeling. Pan X; Muir ER; Sellitto C; Wang K; Cheng C; Pierscionek B; Donaldson PJ; White TW Invest Ophthalmol Vis Sci; 2023 Apr; 64(4):24. PubMed ID: 37079314 [TBL] [Abstract][Full Text] [Related]
19. Change in shape of the aging human crystalline lens with accommodation. Dubbelman M; Van der Heijde GL; Weeber HA Vision Res; 2005 Jan; 45(1):117-32. PubMed ID: 15571742 [TBL] [Abstract][Full Text] [Related]
20. Ocular anterior segment biometry and high-order wavefront aberrations during accommodation. Yuan Y; Shao Y; Tao A; Shen M; Wang J; Shi G; Chen Q; Zhu D; Lian Y; Qu J; Zhang Y; Lu F Invest Ophthalmol Vis Sci; 2013 Oct; 54(10):7028-37. PubMed ID: 24065809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]