These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 23928083)

  • 1. Invertebrate vision: peripheral adaptation to repeated object motion.
    Nordström K; Gonzalez-Bellido PT
    Curr Biol; 2013 Aug; 23(15):R655-6. PubMed ID: 23928083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behaviorally related neural plasticity in the arthropod optic lobes.
    Berón de Astrada M; Bengochea M; Sztarker J; Delorenzi A; Tomsic D
    Curr Biol; 2013 Aug; 23(15):1389-98. PubMed ID: 23831291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direction Selective Neurons Responsive to Horizontal Motion in a Crab Reflect an Adaptation to Prevailing Movements in Flat Environments.
    Scarano F; Tomsic D; Sztarker J
    J Neurosci; 2020 Jul; 40(29):5561-5571. PubMed ID: 32499380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A network of visual motion-sensitive neurons for computing object position in an arthropod.
    Medan V; Berón De Astrada M; Scarano F; Tomsic D
    J Neurosci; 2015 Apr; 35(17):6654-66. PubMed ID: 25926445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiology and morphology of visual movement detector neurons in a crab (Decapoda: Brachyura).
    Berón de Astrada M; Tomsic D
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Aug; 188(7):539-51. PubMed ID: 12209342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of lobula giant neurons responsive to visual stimuli that elicit escape behaviors in the crab Chasmagnathus.
    Medan V; Oliva D; Tomsic D
    J Neurophysiol; 2007 Oct; 98(4):2414-28. PubMed ID: 17715192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organization of optic lobes that support motion detection in a semiterrestrial crab.
    Sztarker J; Strausfeld NJ; Tomsic D
    J Comp Neurol; 2005 Dec; 493(3):396-411. PubMed ID: 16261533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of individual neurons reflecting short- and long-term visual memory in an arthropodo.
    Tomsic D; Berón de Astrada M; Sztarker J
    J Neurosci; 2003 Sep; 23(24):8539-46. PubMed ID: 13679423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization of columnar inputs in the third optic ganglion of a highly visual crab.
    Bengochea M; Berón de Astrada M
    J Physiol Paris; 2014; 108(2-3):61-70. PubMed ID: 24929118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual motion processing subserving behavior in crabs.
    Tomsic D
    Curr Opin Neurobiol; 2016 Dec; 41():113-121. PubMed ID: 27662055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomical organization of retinotopic motion-sensitive pathways in the optic lobes of flies.
    Douglass JK; Strausfeld NJ
    Microsc Res Tech; 2003 Oct; 62(2):132-50. PubMed ID: 12966499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How visual space maps in the optic neuropils of a crab.
    De Astrada MB; Medan V; Tomsic D
    J Comp Neurol; 2011 Jun; 519(9):1631-9. PubMed ID: 21452243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae).
    Oliva D; Medan V; Tomsic D
    J Exp Biol; 2007 Mar; 210(Pt 5):865-80. PubMed ID: 17297146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal processing of translational optic flow in the visual system of the shore crab Carcinus maenas.
    Horseman BG; Macauley MW; Barnes WJ
    J Exp Biol; 2011 May; 214(Pt 9):1586-98. PubMed ID: 21490266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organization and significance of neurons that detect change of visual depth in the hawk moth Manduca sexta.
    Wicklein M; Strausfeld NJ
    J Comp Neurol; 2000 Aug; 424(2):356-76. PubMed ID: 10906708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural circuitry: seeing the parts that make the picture.
    Vélez MM; Clandinin TR
    Curr Biol; 2008 May; 18(9):R378-80. PubMed ID: 18460316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lobula-specific visual projection neurons are involved in perception of motion-defined second-order motion in Drosophila.
    Zhang X; Liu H; Lei Z; Wu Z; Guo A
    J Exp Biol; 2013 Feb; 216(Pt 3):524-34. PubMed ID: 23077158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of visual motion adaptation on neural responses to objects and its dependence on the temporal characteristics of optic flow.
    Liang P; Kern R; Kurtz R; Egelhaaf M
    J Neurophysiol; 2011 Apr; 105(4):1825-34. PubMed ID: 21307322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topography of vision and behaviour.
    Smolka J; Hemmi JM
    J Exp Biol; 2009 Nov; 212(Pt 21):3522-32. PubMed ID: 19837894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Escape response of the crab Neohelice to computer generated looming and translational visual danger stimuli.
    Scarano F; Tomsic D
    J Physiol Paris; 2014; 108(2-3):141-7. PubMed ID: 25220660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.