These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 23928473)

  • 1. Determinants of carbon nanotube toxicity.
    Lanone S; Andujar P; Kermanizadeh A; Boczkowski J
    Adv Drug Deliv Rev; 2013 Dec; 65(15):2063-9. PubMed ID: 23928473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: The contribution of physico-chemical characteristics.
    Johnston HJ; Hutchison GR; Christensen FM; Peters S; Hankin S; Aschberger K; Stone V
    Nanotoxicology; 2010 Jun; 4(2):207-46. PubMed ID: 20795897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of single-walled carbon nanotubes on the embryo: a brief review.
    Al Moustafa AE; Mfoumou E; Roman DE; Nerguizian V; Alazzam A; Stiharu I; Yasmeen A
    Int J Nanomedicine; 2016; 11():349-55. PubMed ID: 26855573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in mechanisms and signaling pathways of carbon nanotube toxicity.
    Dong J; Ma Q
    Nanotoxicology; 2015; 9(5):658-76. PubMed ID: 25676622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytotoxicity of carbon nanotube variants: a comparative in vitro exposure study with A549 epithelial and J774 macrophage cells.
    Kumarathasan P; Breznan D; Das D; Salam MA; Siddiqui Y; MacKinnon-Roy C; Guan J; de Silva N; Simard B; Vincent R
    Nanotoxicology; 2015 Mar; 9(2):148-61. PubMed ID: 24713075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging methods for determining uptake and toxicity of carbon nanotubes in vitro and in vivo.
    Nerl HC; Cheng C; Goode AE; Bergin SD; Lich B; Gass M; Porter AE
    Nanomedicine (Lond); 2011 Jul; 6(5):849-65. PubMed ID: 21793676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the toxicity of carbon nanotubes.
    Liu Y; Zhao Y; Sun B; Chen C
    Acc Chem Res; 2013 Mar; 46(3):702-13. PubMed ID: 22999420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The devil and holy water: protein and carbon nanotube hybrids.
    Calvaresi M; Zerbetto F
    Acc Chem Res; 2013 Nov; 46(11):2454-63. PubMed ID: 23826731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: a review.
    Du J; Wang S; You H; Zhao X
    Environ Toxicol Pharmacol; 2013 Sep; 36(2):451-462. PubMed ID: 23770455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct growth of aligned carbon nanotubes on bulk metals.
    Talapatra S; Kar S; Pal SK; Vajtai R; Ci L; Victor P; Shaijumon MM; Kaur S; Nalamasu O; Ajayan PM
    Nat Nanotechnol; 2006 Nov; 1(2):112-6. PubMed ID: 18654161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyacrylonitrile/carbon nanotube composite films.
    Guo H; Minus ML; Jagannathan S; Kumar S
    ACS Appl Mater Interfaces; 2010 May; 2(5):1331-42. PubMed ID: 20441181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen-induced catalyst restructuring for epitaxial growth of multiwalled carbon nanotubes.
    Pattinson SW; Ranganathan V; Murakami HK; Koziol KK; Windle AH
    ACS Nano; 2012 Sep; 6(9):7723-30. PubMed ID: 22853327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A meta-analysis of carbon nanotube pulmonary toxicity studies--how physical dimensions and impurities affect the toxicity of carbon nanotubes.
    Gernand JM; Casman EA
    Risk Anal; 2014 Mar; 34(3):583-97. PubMed ID: 24024907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes.
    Li Z; Dervishi E; Xu Y; Ma X; Saini V; Biris AS; Little R; Biris AR; Lupu D
    J Chem Phys; 2008 Aug; 129(7):074712. PubMed ID: 19044797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of dimensionality of nanostructured carbon on the architecture of organic-inorganic hybrid materials.
    Misra RD; Depan D; Shah J
    Phys Chem Chem Phys; 2013 Aug; 15(31):12988-97. PubMed ID: 23817610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term colloidal stability of 10 carbon nanotube types in the absence/presence of humic acid and calcium.
    Schwyzer I; Kaegi R; Sigg L; Smajda R; Magrez A; Nowack B
    Environ Pollut; 2012 Oct; 169():64-73. PubMed ID: 22683482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory toxicities of nanomaterials -- a focus on carbon nanotubes.
    Boczkowski J; Lanone S
    Adv Drug Deliv Rev; 2012 Dec; 64(15):1694-9. PubMed ID: 22641117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physicochemical characterization and genotoxicity of the broad class of carbon nanotubes and nanofibers used or produced in U.S. facilities.
    Fraser K; Kodali V; Yanamala N; Birch ME; Cena L; Casuccio G; Bunker K; Lersch TL; Evans DE; Stefaniak A; Hammer MA; Kashon ML; Boots T; Eye T; Hubczak J; Friend SA; Dahm M; Schubauer-Berigan MK; Siegrist K; Lowry D; Bauer AK; Sargent LM; Erdely A
    Part Fibre Toxicol; 2020 Dec; 17(1):62. PubMed ID: 33287860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and characterization of carbon nanotube reinforced poly(methyl methacrylate) nanocomposites.
    Yu S; Juay YK; Young MS
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1852-7. PubMed ID: 18572586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.