These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 23928473)

  • 21. Growth kinetics of vertically aligned carbon nanotube arrays in clean oxygen-free conditions.
    In JB; Grigoropoulos CP; Chernov AA; Noy A
    ACS Nano; 2011 Dec; 5(12):9602-10. PubMed ID: 22070618
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Striking influence of the catalyst support and its acid-base properties: new insight into the growth mechanism of carbon nanotubes.
    Magrez A; Smajda R; Seo JW; Horváth E; Ribic PR; Andresen JC; Acquaviva D; Olariu A; Laurenczy G; Forró L
    ACS Nano; 2011 May; 5(5):3428-37. PubMed ID: 21517089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments.
    Heister E; Lamprecht C; Neves V; Tîlmaciu C; Datas L; Flahaut E; Soula B; Hinterdorfer P; Coley HM; Silva SR; McFadden J
    ACS Nano; 2010 May; 4(5):2615-26. PubMed ID: 20380453
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring the diameter and surface dependent conformational changes in carbon nanotube-protein corona and the related cytotoxicity.
    Zhao X; Lu D; Hao F; Liu R
    J Hazard Mater; 2015 Jul; 292():98-107. PubMed ID: 25797928
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single- and multi-wall carbon nanotubes versus asbestos: are the carbon nanotubes a new health risk to humans?
    Pacurari M; Castranova V; Vallyathan V
    J Toxicol Environ Health A; 2010; 73(5):378-95. PubMed ID: 20155580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Early signs of multi-walled carbon nanotbues degradation in macrophages, via an intracellular pH-dependent biological mechanism; importance of length and functionalization.
    Landry M; Pinault M; Tchankouo S; Charon É; Ridoux A; Boczkowski J; Mayne-L'Hermite M; Lanone S
    Part Fibre Toxicol; 2016 Nov; 13(1):61. PubMed ID: 27881140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Colloidal stability of suspended and agglomerate structures of settled carbon nanotubes in different aqueous matrices.
    Schwyzer I; Kaegi R; Sigg L; Nowack B
    Water Res; 2013 Aug; 47(12):3910-20. PubMed ID: 23582307
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A cone-shaped 3D carbon nanotube probe for neural recording.
    Su HC; Lin CM; Yen SJ; Chen YC; Chen CH; Yeh SR; Fang W; Chen H; Yao DJ; Chang YC; Yew TR
    Biosens Bioelectron; 2010 Sep; 26(1):220-7. PubMed ID: 20685101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genotoxicity and carcinogenicity risk of carbon nanotubes.
    Toyokuni S
    Adv Drug Deliv Rev; 2013 Dec; 65(15):2098-110. PubMed ID: 23751780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of carbon nanoscrolls from monolayer graphene.
    Xia D; Xue Q; Xie J; Chen H; Lv C; Besenbacher F; Dong M
    Small; 2010 Sep; 6(18):2010-9. PubMed ID: 20715074
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toxicity of single-walled carbon nanotubes.
    Ong LC; Chung FF; Tan YF; Leong CO
    Arch Toxicol; 2016 Jan; 90(1):103-18. PubMed ID: 25273022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts.
    Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K
    ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron field emission characteristics and field evaporation of a single carbon nanotube.
    Wang MS; Peng LM; Wang JY; Chen Q
    J Phys Chem B; 2005 Jan; 109(1):110-3. PubMed ID: 16850991
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controllable pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells.
    Mu Y; Liang H; Hu J; Jiang L; Wan L
    J Phys Chem B; 2005 Dec; 109(47):22212-6. PubMed ID: 16853891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of biocompatible dispersants for carbon nanotube toxicity tests.
    Kim JS; Song KS; Lee JH; Yu IJ
    Arch Toxicol; 2011 Dec; 85(12):1499-508. PubMed ID: 21656221
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption of lactate dehydrogenase enzyme on carbon nanotubes: how to get accurate results for the cytotoxicity of these nanomaterials.
    Forest V; Figarol A; Boudard D; Cottier M; Grosseau P; Pourchez J
    Langmuir; 2015 Mar; 31(12):3635-43. PubMed ID: 25768724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron transport characteristics of organic molecule encapsulated carbon nanotubes.
    Lee SU; Belosludov RV; Mizuseki H; Kawazoe Y
    Nanoscale; 2011 Apr; 3(4):1773-9. PubMed ID: 21359303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of catalyst thickness and plasma pretreatment on the growth of carbon nanotubes and their field emission properties.
    Uh HS; Park SS; Kim BW
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3731-5. PubMed ID: 18047047
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Macroscopic carbon nanotube assemblies: preparation, properties, and potential applications.
    Liu L; Ma W; Zhang Z
    Small; 2011 Jun; 7(11):1504-20. PubMed ID: 21506264
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deposition of carbon nanotubes by a marine suspension feeder revealed by chemical and isotopic tracers.
    Hanna SK; Miller RJ; Lenihan HS
    J Hazard Mater; 2014 Aug; 279():32-7. PubMed ID: 25036998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.