These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 23928808)
1. Assessing natural and anthropogenic variability in wetland structure for two hydrogeomorphic riverine wetland subclasses. Dvorett D; Bidwell J; Davis C; DuBois C Environ Manage; 2013 Oct; 52(4):1009-22. PubMed ID: 23928808 [TBL] [Abstract][Full Text] [Related]
2. Testing the basic assumption of the hydrogeomorphic approach to assessing wetland functions. Hruby T Environ Manage; 2001 May; 27(5):749-61. PubMed ID: 11334162 [TBL] [Abstract][Full Text] [Related]
3. Comparison of hydrology of wetlands in Pennsylvania and Oregon (USA) as an indicator of transferability of hydrogeomorphic (HGM) functional models between regions. Cole CA; Brooks RP; Shaffer PW; Kentula ME Environ Manage; 2002 Aug; 30(2):265-78. PubMed ID: 12105766 [TBL] [Abstract][Full Text] [Related]
4. Rapid assessment of urban wetlands: do hydrogeomorphic classification and reference criteria work? Stander EK; Ehrenfeld JG Environ Manage; 2009 Apr; 43(4):725-42. PubMed ID: 18850244 [TBL] [Abstract][Full Text] [Related]
5. Losing function through wetland mitigation in central Pennsylvania, USA. Hoeltje SM; Cole CA Environ Manage; 2007 Mar; 39(3):385-402. PubMed ID: 17265110 [TBL] [Abstract][Full Text] [Related]
6. The response of wetland quality indicators to human disturbance indicators across the United States. Herlihy AT; Sifneos JC; Lomnicky GA; Nahlik AM; Kentula ME; Magee TK; Weber MH; Trebitz AS Environ Monit Assess; 2019 Jun; 191(Suppl 1):296. PubMed ID: 31222417 [TBL] [Abstract][Full Text] [Related]
7. Developmental framework for a desktop hydrogeomorphic wetland functional assessment derived from field-based data. Backhaus PJ; Wardrop DH; McCarty GW; Brooks RP Environ Monit Assess; 2024 Jan; 196(2):217. PubMed ID: 38286914 [TBL] [Abstract][Full Text] [Related]
8. Identifying driving hydrogeomorphic factors of coastal wetland downgrading using random forest classification models. He K; Li W; Zhang Y; Sun G; McNulty SG; Flanagan NE; Richardson CJ Sci Total Environ; 2023 Oct; 894():164995. PubMed ID: 37343878 [TBL] [Abstract][Full Text] [Related]
9. The 2011 National Wetland Condition Assessment: overview and an invitation. Kentula ME; Paulsen SG Environ Monit Assess; 2019 Jun; 191(Suppl 1):325. PubMed ID: 31222397 [TBL] [Abstract][Full Text] [Related]
10. Striving for consistency in the National Wetland Condition Assessment: developing a reference condition approach for assessing wetlands at a continental scale. Herlihy AT; Kentula ME; Magee TK; Lomnicky GA; Nahlik AM; Serenbetz G Environ Monit Assess; 2019 Jun; 191(Suppl 1):327. PubMed ID: 31222681 [TBL] [Abstract][Full Text] [Related]
11. Landscape as a predictor of wetland condition: an evaluation of the Landscape Development Index (LDI) with a large reference wetland dataset from Ohio. Mack JJ Environ Monit Assess; 2006 Sep; 120(1-3):221-41. PubMed ID: 16758292 [TBL] [Abstract][Full Text] [Related]
12. [Wetland landscape ecological classification: research progress]. Cao Y; Mo LJ; Li Y; Zhang WM Ying Yong Sheng Tai Xue Bao; 2009 Dec; 20(12):3084-92. PubMed ID: 20353081 [TBL] [Abstract][Full Text] [Related]
13. Effects of vegetation types on water-extracted soil organic matter (WSOM) from riparian wetland and its impacts on riverine water quality: Implications for riparian wetland management. Wang Y; Hu Y; Yang C; Chen Y Sci Total Environ; 2018 Jul; 628-629():1249-1257. PubMed ID: 30045546 [TBL] [Abstract][Full Text] [Related]
14. Comparison of function of created wetlands of two age classes in central Pennsylvania. Hoeltje SM; Cole CA Environ Manage; 2009 Apr; 43(4):597-608. PubMed ID: 18629580 [TBL] [Abstract][Full Text] [Related]
15. Wetland functional assessment and uncertainty analysis using fuzzy α-cut-based modified hydrogeomorphic approach. Sharma A; Kumar D; Rallapalli S; Singh AP Environ Sci Pollut Res Int; 2023 Jun; 30(28):72900-72915. PubMed ID: 37184791 [TBL] [Abstract][Full Text] [Related]
16. Quantifying the extent of human disturbance activities and anthropogenic stressors in wetlands across the conterminous United States: results from the National Wetland Condition Assessment. Lomnicky GA; Herlihy AT; Kaufmann PR Environ Monit Assess; 2019 Jun; 191(Suppl 1):324. PubMed ID: 31222443 [TBL] [Abstract][Full Text] [Related]
17. Heterogeneity of wetland landscapes and their relationships with anthropogenic disturbances and precipitation in a semiarid region of China. Zhao D; Liu J Environ Monit Assess; 2022 Sep; 194(10):786. PubMed ID: 36103056 [TBL] [Abstract][Full Text] [Related]
18. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands. Lee SY; Ryan ME; Hamlet AF; Palen WJ; Lawler JJ; Halabisky M PLoS One; 2015; 10(9):e0136385. PubMed ID: 26331850 [TBL] [Abstract][Full Text] [Related]
19. Inventorying and monitoring wetland condition and restoration potential on a watershed basis with examples from spring creek watershed, Pennsylvania, USA. Brooks RP; Wardrop DH; Cole CA Environ Manage; 2006 Oct; 38(4):673-87. PubMed ID: 16841177 [TBL] [Abstract][Full Text] [Related]
20. A national-scale vegetation multimetric index (VMMI) as an indicator of wetland condition across the conterminous United States. Magee TK; Blocksom KA; Fennessy MS Environ Monit Assess; 2019 Jun; 191(Suppl 1):322. PubMed ID: 31222469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]