These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23929068)

  • 1. Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure.
    Dalton DA; Hsieh WP; Hohensee GT; Cahill DG; Goncharov AF
    Sci Rep; 2013; 3():2400. PubMed ID: 23929068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice thermal conductivity of MgO at conditions of Earth's interior.
    Tang X; Dong J
    Proc Natl Acad Sci U S A; 2010 Mar; 107(10):4539-43. PubMed ID: 20176973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lattice thermal conductivity of lower mantle minerals and heat flux from Earth's core.
    Manthilake GM; de Koker N; Frost DJ; McCammon CA
    Proc Natl Acad Sci U S A; 2011 Nov; 108(44):17901-4. PubMed ID: 22021444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal conductivity of ionic systems from equilibrium molecular dynamics.
    Salanne M; Marrocchelli D; Merlet C; Ohtori N; Madden PA
    J Phys Condens Matter; 2011 Mar; 23(10):102101. PubMed ID: 21335634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of iron on the lattice thermal conductivity of Earth's deep mantle and implications for mantle dynamics.
    Hsieh WP; Deschamps F; Okuchi T; Lin JF
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4099-4104. PubMed ID: 29610319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal conductivity of periclase (MgO) from first principles.
    Stackhouse S; Stixrude L; Karki BB
    Phys Rev Lett; 2010 May; 104(20):208501. PubMed ID: 20867074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of pulsed light heating thermoreflectance and laser-heated diamond anvil cell for in-situ high pressure-temperature thermal diffusivity measurements.
    Hasegawa A; Yagi T; Ohta K
    Rev Sci Instrum; 2019 Jul; 90(7):074901. PubMed ID: 31370458
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Dekura H; Tsuchiya T
    J Phys Condens Matter; 2023 May; 35(30):. PubMed ID: 37071998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal Conductivity of Helium and Argon at High Pressure and High Temperature.
    Hsieh WP; Tsao YC; Lin CH
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal conductivity of MgO periclase from equilibrium first principles molecular dynamics.
    de Koker N
    Phys Rev Lett; 2009 Sep; 103(12):125902. PubMed ID: 19792447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiative conductivity in the Earth's lower mantle.
    Goncharov AF; Haugen BD; Struzhkin VV; Beck P; Jacobsen SD
    Nature; 2008 Nov; 456(7219):231-4. PubMed ID: 19005553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct measurement of thermal conductivity in solid iron at planetary core conditions.
    Konôpková Z; McWilliams RS; Gómez-Pérez N; Goncharov AF
    Nature; 2016 Jun; 534(7605):99-101. PubMed ID: 27251283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inversion of the temperature dependence of thermal conductivity of hcp iron under high pressure.
    Hasegawa A; Ohta K; Yagi T; Hirose K; Yamashita Y
    Sci Rep; 2024 Oct; 14(1):23582. PubMed ID: 39384809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polar effects on the thermal conductivity of cubic boron nitride under pressure.
    Mukhopadhyay S; Stewart DA
    Phys Rev Lett; 2014 Jul; 113(2):025901. PubMed ID: 25062211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational and Experimental
    Sorte EG; Rimsza JM; Alam TM
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32093106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal conductivity of diamond nanorods: Molecular simulation and scaling relations.
    Padgett CW; Shenderova O; Brenner DW
    Nano Lett; 2006 Aug; 6(8):1827-31. PubMed ID: 16895381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical study on the temperature dependence of zero-field splitting for the tetragonal Cr3+ center in MgO crystal.
    Zheng WC; Jia GM; He L; Yang WQ
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):818-20. PubMed ID: 21216186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistivity of solid and liquid Fe-Ni-Si with applications to the cores of Earth, Mercury and Venus.
    Berrada M; Secco RA; Yong W
    Sci Rep; 2022 Jun; 12(1):9941. PubMed ID: 35705611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A molecular dynamics-stochastic model for thermal conductivity of nanofluids and its experimental validation.
    Ghosh MM; Roy S; Pabi SK; Ghosh S
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2196-207. PubMed ID: 21449369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.