BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 23929534)

  • 21. The human parahippocampal cortex subserves egocentric spatial learning during navigation in a virtual maze.
    Weniger G; Siemerkus J; Schmidt-Samoa C; Mehlitz M; Baudewig J; Dechent P; Irle E
    Neurobiol Learn Mem; 2010 Jan; 93(1):46-55. PubMed ID: 19683063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Caudate nucleus-dependent navigation strategies are associated with increased risk-taking and set-shifting behavior.
    Aumont É; Blanchette CA; Bohbot VD; West GL
    Learn Mem; 2019 Apr; 26(4):101-108. PubMed ID: 30898972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strategies used by hippocampal- and caudate-putamen-lesioned rats in a learning task.
    Oliveira MG; Bueno OF; Pomarico AC; Gugliano EB
    Neurobiol Learn Mem; 1997 Jul; 68(1):32-41. PubMed ID: 9195587
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stop and look! Evidence for a bias towards virtual navigation response strategies in children with ADHD symptoms.
    Robaey P; McKenzie S; Schachar R; Boivin M; Bohbot VD
    Behav Brain Res; 2016 Feb; 298(Pt A):48-54. PubMed ID: 26310386
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Opposing effects of cortisol on learning and memory in children using spatial versus response-dependent navigation strategies.
    Blanchette CA; Kurdi V; Fouquet C; Schachar R; Boivin M; Hastings P; Robaey P; West GL; Bohbot VD
    Neurobiol Learn Mem; 2020 Mar; 169():107172. PubMed ID: 31978550
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial deficits in a virtual water maze in amnesic participants with hippocampal damage.
    Goodrich-Hunsaker NJ; Livingstone SA; Skelton RW; Hopkins RO
    Hippocampus; 2010 Apr; 20(4):481-91. PubMed ID: 19554566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The BDNF val66met polymorphism is associated with decreased use of landmarks and decreased fMRI activity in the hippocampus during virtual navigation.
    West GL; Konishi K; MacDonald K; Ni A; Joober R; Bohbot VD
    Eur J Neurosci; 2021 Oct; 54(7):6406-6421. PubMed ID: 34467592
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial navigational strategies correlate with gray matter in the hippocampus of healthy older adults tested in a virtual maze.
    Konishi K; Bohbot VD
    Front Aging Neurosci; 2013; 5():1. PubMed ID: 23430962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling the interaction of navigational systems in a reward-based virtual navigation task.
    Raiesdana S
    J Integr Neurosci; 2018; 17(1):27-42. PubMed ID: 29376881
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Executive and memory correlates of age-related differences in wayfinding performances using a virtual reality application.
    Taillade M; Sauzéon H; Dejos M; Pala PA; Larrue F; Wallet G; Gross C; N'Kaoua B
    Neuropsychol Dev Cogn B Aging Neuropsychol Cogn; 2013; 20(3):298-319. PubMed ID: 22901081
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Men and women differ in object memory but not performance of a virtual radial maze.
    Levy LJ; Astur RS; Frick KM
    Behav Neurosci; 2005 Aug; 119(4):853-62. PubMed ID: 16187814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hippocampus-dependent spatial learning is associated with higher global cognition among healthy older adults.
    Konishi K; Mckenzie S; Etchamendy N; Roy S; Bohbot VD
    Neuropsychologia; 2017 Nov; 106():310-321. PubMed ID: 28963056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extrinsic reference frames modify the neural substrates of object-location representations.
    Chan E; Baumann O; Bellgrove MA; Mattingley JB
    Neuropsychologia; 2013 Apr; 51(5):781-8. PubMed ID: 23422330
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Memory in early adolescents born prematurely: a functional magnetic resonance imaging investigation.
    Curtis WJ; Zhuang J; Townsend EL; Hu X; Nelson CA
    Dev Neuropsychol; 2006; 29(2):341-77. PubMed ID: 16515410
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Memory consolidation of landmarks in good navigators.
    Janzen G; Jansen C; van Turennout M
    Hippocampus; 2008; 18(1):40-7. PubMed ID: 17924521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hippocampal and caudate metabolic activity associated with different navigational strategies.
    Miranda R; Blanco E; Begega A; Rubio S; Arias JL
    Behav Neurosci; 2006 Jun; 120(3):641-50. PubMed ID: 16768616
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Age differences in spatial memory in a virtual environment navigation task.
    Moffat SD; Zonderman AB; Resnick SM
    Neurobiol Aging; 2001; 22(5):787-96. PubMed ID: 11705638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Eye tracking, strategies, and sex differences in virtual navigation.
    Andersen NE; Dahmani L; Konishi K; Bohbot VD
    Neurobiol Learn Mem; 2012 Jan; 97(1):81-9. PubMed ID: 22001012
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Landmark sequencing and route knowledge: an fMRI study.
    Nemmi F; Piras F; Péran P; Incoccia C; Sabatini U; Guariglia C
    Cortex; 2013 Feb; 49(2):507-19. PubMed ID: 22225882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Negative BOLD response in the hippocampus during short-term spatial memory retrieval.
    Nilsson J; Ferrier IN; Coventry K; Bester A; Finkelmeyer A
    J Cogn Neurosci; 2013 Aug; 25(8):1358-71. PubMed ID: 23530922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.