BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23929556)

  • 1. Photic phase-response curve in 2 strains of mice with impaired responsiveness to estrogens.
    Blattner MS; Mahoney MM
    J Biol Rhythms; 2013 Aug; 28(4):291-300. PubMed ID: 23929556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian parameters are altered in two strains of mice with transgenic modifications of estrogen receptor subtype 1.
    Blattner MS; Mahoney MM
    Genes Brain Behav; 2012 Oct; 11(7):828-36. PubMed ID: 22883149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estrogen receptor 1 modulates circadian rhythms in adult female mice.
    Blattner MS; Mahoney MM
    Chronobiol Int; 2014 Jun; 31(5):637-44. PubMed ID: 24527952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in estrogen receptor signaling alters the timekeeping system in male mice.
    Blattner MS; Mahoney MM
    Behav Brain Res; 2015 Nov; 294():43-9. PubMed ID: 26241171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered photic and non-photic phase shifts in 5-HT(1A) receptor knockout mice.
    Smith VM; Sterniczuk R; Phillips CI; Antle MC
    Neuroscience; 2008 Dec; 157(3):513-23. PubMed ID: 18930788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estradiol deficiency during development modulates the expression of circadian and daily rhythms in male and female aromatase knockout mice.
    Brockman R; Bunick D; Mahoney MM
    Horm Behav; 2011 Sep; 60(4):439-47. PubMed ID: 21816154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-parametric photic entrainment of Djungarian hamsters with different rhythmic phenotypes.
    Schöttner K; Hauer J; Weinert D
    Chronobiol Int; 2016; 33(5):506-19. PubMed ID: 27031879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of dexras1 alters nonphotic circadian phase shifts and reveals a role for the intergeniculate leaflet (IGL) in gene-targeted mice.
    Koletar MM; Cheng HY; Penninger JM; Ralph MR
    Chronobiol Int; 2011 Aug; 28(7):553-62. PubMed ID: 21834641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The noradrenaline reuptake inhibitor atomoxetine phase-shifts the circadian clock in mice.
    O'Keeffe SM; Thome J; Coogan AN
    Neuroscience; 2012 Jan; 201():219-30. PubMed ID: 22119060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavioural and cellular responses to light of the circadian system of tau mutant and wild-type Syrian hamsters.
    Grosse J; Loudon AS; Hastings MH
    Neuroscience; 1995 Mar; 65(2):587-97. PubMed ID: 7777171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Re-entrainment behavior of Djungarian hamsters (Phodopus sungorus) with different rhythmic phenotype following light-dark shifts.
    Schöttner K; Limbach A; Weinert D
    Chronobiol Int; 2011 Feb; 28(1):58-69. PubMed ID: 21182405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paying the circadian toll: the circadian response to LPS injection is dependent on the Toll-like receptor 4.
    Paladino N; Leone MJ; Plano SA; Golombek DA
    J Neuroimmunol; 2010 Aug; 225(1-2):62-7. PubMed ID: 20554031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oestradiol Exposure Early in Life Programs Daily and Circadian Activity Rhythms in Adult Mice.
    Royston SE; Bunick D; Mahoney MM
    J Neuroendocrinol; 2016 Jan; 28(1):. PubMed ID: 26560973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The endogenous melatonin (MT) signal facilitates reentrainment of the circadian system to light-induced phase advances by acting upon MT2 receptors.
    Pfeffer M; Rauch A; Korf HW; von Gall C
    Chronobiol Int; 2012 May; 29(4):415-29. PubMed ID: 22489607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-day response in Djungarian hamsters of different circadian phenotypes.
    Schöttner K; Schmidt M; Hering A; Schatz J; Weinert D
    Chronobiol Int; 2012 May; 29(4):430-42. PubMed ID: 22515562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light pulses do not induce c-fos or per1 in the SCN of hamsters that fail to reentrain to the photocycle.
    Barakat MT; O'Hara BF; Cao VH; Larkin JE; Heller HC; Ruby NF
    J Biol Rhythms; 2004 Aug; 19(4):287-97. PubMed ID: 15245648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian locomotor analysis of male mice lacking the gene for neuronal nitric oxide synthase (nNOS-/-).
    Kriegsfeld LJ; Demas GE; Lee SE; Dawson TM; Dawson VL; Nelson RJ
    J Biol Rhythms; 1999 Feb; 14(1):20-7. PubMed ID: 10036989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serotonergic potentiation of photic phase shifts: examination of receptor contributions and early biochemical/molecular events.
    Smith VM; Hagel K; Antle MC
    Neuroscience; 2010 Jan; 165(1):16-27. PubMed ID: 19799970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced light-entrained activity onsets and restored free-running suprachiasmatic nucleus circadian rhythms in per2/dec mutant mice.
    Bode B; Taneja R; Rossner MJ; Oster H
    Chronobiol Int; 2011 Nov; 28(9):737-50. PubMed ID: 22080784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the duper mutation on responses to light: parametric and nonparametric responses, range of entrainment, and masking.
    Bittman EL
    J Biol Rhythms; 2014 Apr; 29(2):97-109. PubMed ID: 24682204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.