These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Front-illuminated versus back-illuminated photon-counting CCD-based gamma camera: important consequences for spatial resolution and energy resolution. Heemskerk JW; Westra AH; Linotte PM; Ligtvoet KM; Zbijewski W; Beekman FJ Phys Med Biol; 2007 Apr; 52(8):N149-62. PubMed ID: 17404450 [TBL] [Abstract][Full Text] [Related]
7. Camera technologies for low light imaging: overview and relative advantages. Moomaw B Methods Cell Biol; 2007; 81():251-83. PubMed ID: 17519171 [No Abstract] [Full Text] [Related]
8. Flexible depth of field photography. Kuthirummal S; Nagahara H; Zhou C; Nayar SK IEEE Trans Pattern Anal Mach Intell; 2011 Jan; 33(1):58-71. PubMed ID: 21088319 [TBL] [Abstract][Full Text] [Related]
9. Characterizing and correcting camera noise in back-illuminated sCMOS cameras. Zhang Z; Wang Y; Piestun R; Huang ZL Opt Express; 2021 Mar; 29(5):6668-6690. PubMed ID: 33726183 [TBL] [Abstract][Full Text] [Related]
10. Quantitative performance evaluation of a back-illuminated sCMOS camera with 95% QE for super-resolution localization microscopy. Wang Y; Zhao L; Hu Z; Wang Y; Zhao Z; Li L; Huang ZL Cytometry A; 2017 Dec; 91(12):1175-1183. PubMed ID: 29165899 [TBL] [Abstract][Full Text] [Related]
11. Cameras for digital microscopy. Spring KR Methods Cell Biol; 2013; 114():163-78. PubMed ID: 23931507 [TBL] [Abstract][Full Text] [Related]
12. Localization-based super-resolution microscopy with an sCMOS camera. Huang ZL; Zhu H; Long F; Ma H; Qin L; Liu Y; Ding J; Zhang Z; Luo Q; Zeng S Opt Express; 2011 Sep; 19(20):19156-68. PubMed ID: 21996858 [TBL] [Abstract][Full Text] [Related]
13. Digital photography for the light microscope: results with a gated, video-rate CCD camera and NIH-image software. Shaw SL; Salmon ED; Quatrano RS Biotechniques; 1995 Dec; 19(6):946-55. PubMed ID: 8747661 [TBL] [Abstract][Full Text] [Related]
14. Imaging of chemiluminescent signals with cooled CCD camera systems. Martin CS; Bronstein I J Biolumin Chemilumin; 1994; 9(3):145-53. PubMed ID: 7942119 [TBL] [Abstract][Full Text] [Related]
15. High-quality virus images obtained by transmission electron microscopy and charge coupled device digital camera technology. Tiekotter KL; Ackermann HW J Virol Methods; 2009 Jul; 159(1):87-92. PubMed ID: 19442850 [TBL] [Abstract][Full Text] [Related]
16. Camera selection for real-time in vivo radiation treatment verification systems using Cherenkov imaging. Andreozzi JM; Zhang R; Glaser AK; Jarvis LA; Pogue BW; Gladstone DJ Med Phys; 2015 Feb; 42(2):994-1004. PubMed ID: 25652512 [TBL] [Abstract][Full Text] [Related]
17. A comparative study of EM-CCD and CMOS cameras for particle ion trajectory imaging. Yamamoto S; Yoshino M; Nakanishi K; Yogo K; Kamada K; Yoshikawa A; Kataoka J Appl Radiat Isot; 2024 Feb; 204():111143. PubMed ID: 38101006 [TBL] [Abstract][Full Text] [Related]
18. High-sensitivity lens-coupled slow-scan CCD camera for transmission electron microscopy. Fan GY; Ellisman MH Ultramicroscopy; 1993 Sep; 52(1):21-9. PubMed ID: 8266607 [TBL] [Abstract][Full Text] [Related]
19. Fast and accurate sCMOS noise correction for fluorescence microscopy. Mandracchia B; Hua X; Guo C; Son J; Urner T; Jia S Nat Commun; 2020 Jan; 11(1):94. PubMed ID: 31901080 [TBL] [Abstract][Full Text] [Related]