BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23931696)

  • 1. Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ɛ-caprolactone.
    Staudt S; Bornscheuer UT; Menyes U; Hummel W; Gröger H
    Enzyme Microb Technol; 2013 Sep; 53(4):288-92. PubMed ID: 23931696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A self-sufficient Baeyer-Villiger biocatalysis system for the synthesis of ɛ-caprolactone from cyclohexanol.
    Mallin H; Wulf H; Bornscheuer UT
    Enzyme Microb Technol; 2013 Sep; 53(4):283-7. PubMed ID: 23931695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled reactions by coupled enzymes: alcohol to lactone cascade with alcohol dehydrogenase-cyclohexanone monooxygenase fusions.
    Aalbers FS; Fraaije MW
    Appl Microbiol Biotechnol; 2017 Oct; 101(20):7557-7565. PubMed ID: 28916997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Productivity of cyclohexanone oxidation of the recombinant Corynebacterium glutamicum expressing chnB of Acinetobacter calcoaceticus.
    Doo EH; Lee WH; Seo HS; Seo JH; Park JB
    J Biotechnol; 2009 Jun; 142(2):164-9. PubMed ID: 19397940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced production of epsilon-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene.
    Lee WH; Park JB; Park K; Kim MD; Seo JH
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):329-38. PubMed ID: 17541782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cascade Synthesis from Cyclohexane to ϵ-Caprolactone by Visible-Light-Driven Photocatalysis Combined with Whole-Cell Biological Oxidation.
    Li P; Ma Y; Li Y; Zhang X; Wang Y
    Chembiochem; 2020 Jul; 21(13):1852-1855. PubMed ID: 32017323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-expression of an alcohol dehydrogenase and a cyclohexanone monooxygenase for cascade reactions facilitates the regeneration of the NADPH cofactor.
    Kohl A; Srinivasamurthy V; Böttcher D; Kabisch J; Bornscheuer UT
    Enzyme Microb Technol; 2018 Jan; 108():53-58. PubMed ID: 29108627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous biocatalyst production and Baeyer-Villiger oxidation for bioconversion of cyclohexanone by recombinant Escherichia coli expressing cyclohexanone monooxygenase.
    Lee WH; Park YC; Lee DH; Park K; Seo JH
    Appl Biochem Biotechnol; 2005; 121-124():827-36. PubMed ID: 15930562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocatalytic conversion of cycloalkanes to lactones using an in-vivo cascade in Pseudomonas taiwanensis VLB120.
    Karande R; Salamanca D; Schmid A; Buehler K
    Biotechnol Bioeng; 2018 Feb; 115(2):312-320. PubMed ID: 28986995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An enzyme cascade synthesis of ε-caprolactone and its oligomers.
    Schmidt S; Scherkus C; Muschiol J; Menyes U; Winkler T; Hummel W; Gröger H; Liese A; Herz HG; Bornscheuer UT
    Angew Chem Int Ed Engl; 2015 Feb; 54(9):2784-7. PubMed ID: 25597635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme cascade converting cyclohexanol into ε-caprolactone coupled with NADPH recycling using surface displayed alcohol dehydrogenase and cyclohexanone monooxygenase on E. coli.
    Tian H; Furtmann C; Lenz F; Srinivasamurthy V; Bornscheuer UT; Jose J
    Microb Biotechnol; 2022 Aug; 15(8):2235-2249. PubMed ID: 35478318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactone-bound structures of cyclohexanone monooxygenase provide insight into the stereochemistry of catalysis.
    Yachnin BJ; McEvoy MB; MacCuish RJ; Morley KL; Lau PC; Berghuis AM
    ACS Chem Biol; 2014 Dec; 9(12):2843-51. PubMed ID: 25265531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous testing system for Baeyer-Villiger biooxidation using recombinant Escherichia coli expressing cyclohexanone monooxygenase encapsulated in polyelectrolyte complex capsules.
    Bučko M; Schenkmayerová A; Gemeiner P; Vikartovská A; Mihovilovič MD; Lacík I
    Enzyme Microb Technol; 2011 Aug; 49(3):284-8. PubMed ID: 22112513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed evolution of phenylacetone monooxygenase as an active catalyst for the Baeyer-Villiger conversion of cyclohexanone to caprolactone.
    Parra LP; Acevedo JP; Reetz MT
    Biotechnol Bioeng; 2015 Jul; 112(7):1354-64. PubMed ID: 25675885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On oxygen limitation in a whole cell biocatalytic Baeyer-Villiger oxidation process.
    Baldwin CV; Woodley JM
    Biotechnol Bioeng; 2006 Oct; 95(3):362-9. PubMed ID: 16862597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C3 and C6 Modification-Specific OYE Biotransformations of Synthetic Carvones and Sequential BVMO Chemoenzymatic Synthesis of Chiral Caprolactones.
    Issa IS; Toogood HS; Johannissen LO; Raftery J; Scrutton NS; Gardiner JM
    Chemistry; 2019 Feb; 25(12):2983-2988. PubMed ID: 30468546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced production of ε-caprolactone by coexpression of bacterial hemoglobin gene in recombinant Escherichia coli expressing cyclohexanone monooxygenase gene.
    Lee WH; Park EH; Kim MD
    J Microbiol Biotechnol; 2014 Dec; 24(12):1685-9. PubMed ID: 25269815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning of the enzyme ratio in a neutral redox convergent cascade: A key approach for an efficient one-pot/two-step biocatalytic whole-cell system.
    Ménil S; Petit JL; Courvoisier-Dezord E; Debard A; Pellouin V; Reignier T; Sergent M; Deyris V; Duquesne K; de Berardinis V; Alphand V
    Biotechnol Bioeng; 2019 Nov; 116(11):2852-2863. PubMed ID: 31389000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic studies of cyclohexanone monooxygenase: chemical properties of intermediates involved in catalysis.
    Sheng D; Ballou DP; Massey V
    Biochemistry; 2001 Sep; 40(37):11156-67. PubMed ID: 11551214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermediate product control in cascade reaction for one-pot production of ε-caprolactone by Escherichia coli.
    Chen H; Liu R; Cai S; Zhang Y; Zhu C; Yu H; Li S
    Biotechnol J; 2024 Feb; 19(2):e2300210. PubMed ID: 38403458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.