BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 23931758)

  • 1. Loss of cytochrome c oxidase promotes RAS-dependent ROS production from the ER resident NADPH oxidase, Yno1p, in yeast.
    Leadsham JE; Sanders G; Giannaki S; Bastow EL; Hutton R; Naeimi WR; Breitenbach M; Gourlay CW
    Cell Metab; 2013 Aug; 18(2):279-86. PubMed ID: 23931758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial dysfunction reduces yeast replicative lifespan by elevating RAS-dependent ROS production by the ER-localized NADPH oxidase Yno1.
    Yi DG; Hong S; Huh WK
    PLoS One; 2018; 13(6):e0198619. PubMed ID: 29912878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial dysfunction indirectly elevates ROS production by the endoplasmic reticulum.
    Murphy MP
    Cell Metab; 2013 Aug; 18(2):145-6. PubMed ID: 23931748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase.
    Santos CX; Tanaka LY; Wosniak J; Laurindo FR
    Antioxid Redox Signal; 2009 Oct; 11(10):2409-27. PubMed ID: 19388824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species.
    Daiber A
    Biochim Biophys Acta; 2010; 1797(6-7):897-906. PubMed ID: 20122895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling.
    Gao L; Mann GE
    Cardiovasc Res; 2009 Apr; 82(1):9-20. PubMed ID: 19179352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase.
    Musatov A; Robinson NC
    Free Radic Res; 2012 Nov; 46(11):1313-26. PubMed ID: 22856385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of cytochrome c oxidase subunits Va and Vb in the regulation of cancer cell metabolism by Bcl-2.
    Chen ZX; Pervaiz S
    Cell Death Differ; 2010 Mar; 17(3):408-20. PubMed ID: 19834492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases.
    Lee IT; Yang CM
    Biochem Pharmacol; 2012 Sep; 84(5):581-90. PubMed ID: 22587816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consequences of cytochrome c oxidase assembly defects for the yeast stationary phase.
    Dubinski AF; Camasta R; Soule TGB; Reed BH; Glerum DM
    Biochim Biophys Acta Bioenerg; 2018 Jun; 1859(6):445-458. PubMed ID: 29567354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localizing NADPH oxidase-derived ROS.
    Ushio-Fukai M
    Sci STKE; 2006 Aug; 2006(349):re8. PubMed ID: 16926363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging.
    Wang CH; Wu SB; Wu YT; Wei YH
    Exp Biol Med (Maywood); 2013 May; 238(5):450-60. PubMed ID: 23856898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial fusion increases the mitochondrial DNA copy number in budding yeast.
    Hori A; Yoshida M; Ling F
    Genes Cells; 2011 May; 16(5):527-44. PubMed ID: 21463454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degenerative diseases, oxidative stress and cytochrome c oxidase function.
    Kadenbach B; Ramzan R; Vogt S
    Trends Mol Med; 2009 Apr; 15(4):139-47. PubMed ID: 19303362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palmitate increases superoxide production through mitochondrial electron transport chain and NADPH oxidase activity in skeletal muscle cells.
    Lambertucci RH; Hirabara SM; Silveira Ldos R; Levada-Pires AC; Curi R; Pithon-Curi TC
    J Cell Physiol; 2008 Sep; 216(3):796-804. PubMed ID: 18446788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial Sco proteins are involved in oxidative stress defense.
    Ekim Kocabey A; Kost L; Gehlhar M; Rödel G; Gey U
    Redox Biol; 2019 Feb; 21():101079. PubMed ID: 30593977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Respiratory function decline and DNA mutation in mitochondria, oxidative stress and altered gene expression during aging.
    Wei YH; Wu SB; Ma YS; Lee HC
    Chang Gung Med J; 2009; 32(2):113-32. PubMed ID: 19403001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative stress and diabetic cardiovascular disorders: roles of mitochondria and NADPH oxidase.
    Shen GX
    Can J Physiol Pharmacol; 2010 Mar; 88(3):241-8. PubMed ID: 20393589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of extensively oxidized low-density lipoprotein on mitochondrial function and reactive oxygen species in porcine aortic endothelial cells.
    Roy Chowdhury SK; Sangle GV; Xie X; Stelmack GL; Halayko AJ; Shen GX
    Am J Physiol Endocrinol Metab; 2010 Jan; 298(1):E89-98. PubMed ID: 19843872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Panaxydol induces apoptosis through an increased intracellular calcium level, activation of JNK and p38 MAPK and NADPH oxidase-dependent generation of reactive oxygen species.
    Kim JY; Yu SJ; Oh HJ; Lee JY; Kim Y; Sohn J
    Apoptosis; 2011 Apr; 16(4):347-58. PubMed ID: 21190085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.