These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 23932270)
1. Statistics of acoustically induced bubble-nucleation events in in vitro blood: a feasibility study. Gateau J; Taccoen N; Tanter M; Aubry JF Ultrasound Med Biol; 2013 Oct; 39(10):1812-25. PubMed ID: 23932270 [TBL] [Abstract][Full Text] [Related]
2. In vivo bubble nucleation probability in sheep brain tissue. Gateau J; Aubry JF; Chauvet D; Boch AL; Fink M; Tanter M Phys Med Biol; 2011 Nov; 56(22):7001-15. PubMed ID: 22015981 [TBL] [Abstract][Full Text] [Related]
3. The effect of ultrasonic waves on the nucleation of pure water and degassed water. Yu D; Liu B; Wang B Ultrason Sonochem; 2012 May; 19(3):459-63. PubMed ID: 21925917 [TBL] [Abstract][Full Text] [Related]
4. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method. Xu S; Zong Y; Li W; Zhang S; Wan M Ultrason Sonochem; 2014 May; 21(3):975-83. PubMed ID: 24360840 [TBL] [Abstract][Full Text] [Related]
5. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound. Brujan EA; Ikeda T; Matsumoto Y Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873 [TBL] [Abstract][Full Text] [Related]
6. Trans-Stent B-Mode Ultrasound and Passive Cavitation Imaging. Haworth KJ; Raymond JL; Radhakrishnan K; Moody MR; Huang SL; Peng T; Shekhar H; Klegerman ME; Kim H; McPherson DD; Holland CK Ultrasound Med Biol; 2016 Feb; 42(2):518-27. PubMed ID: 26547633 [TBL] [Abstract][Full Text] [Related]
7. Combined passive detection and ultrafast active imaging of cavitation events induced by short pulses of high-intensity ultrasound. Gateau J; Aubry JF; Pernot M; Fink M; Tanter M IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):517-32. PubMed ID: 21429844 [TBL] [Abstract][Full Text] [Related]
8. A new approach to nucleation of cavitation bubbles at chemically modified surfaces. Belova V; Shchukin DG; Gorin DA; Kopyshev A; Möhwald H Phys Chem Chem Phys; 2011 May; 13(17):8015-23. PubMed ID: 21448506 [TBL] [Abstract][Full Text] [Related]
9. The inception of cavitation bubble clouds induced by high-intensity focused ultrasound. Chen H; Li X; Wan M Ultrasonics; 2006 Dec; 44 Suppl 1():e427-9. PubMed ID: 16782158 [TBL] [Abstract][Full Text] [Related]
10. Acoustic Cluster Therapy: In Vitro and Ex Vivo Measurement of Activated Bubble Size Distribution and Temporal Dynamics. Healey AJ; Sontum PC; Kvåle S; Eriksen M; Bendiksen R; Tornes A; Østensen J Ultrasound Med Biol; 2016 May; 42(5):1145-66. PubMed ID: 26831341 [TBL] [Abstract][Full Text] [Related]
11. Influence of dissolved-air concentration on spatial distribution of bubbles for sonochemistry. Tuziuti T; Yasui K; Sivakumar M; Iida Y Ultrasonics; 2006 Dec; 44 Suppl 1():e357-61. PubMed ID: 16780909 [TBL] [Abstract][Full Text] [Related]
12. Agglomeration and rapid ascent of microbubbles by ultrasonic irradiation. Kobayashi D; Hayashida Y; Sano K; Terasaka K Ultrason Sonochem; 2011 Sep; 18(5):1193-6. PubMed ID: 21186134 [TBL] [Abstract][Full Text] [Related]
13. The effect of binding on the subharmonic emissions from individual lipid-encapsulated microbubbles at transmit frequencies of 11 and 25 MHz. Helfield BL; Cherin E; Foster FS; Goertz DE Ultrasound Med Biol; 2013 Feb; 39(2):345-59. PubMed ID: 23219039 [TBL] [Abstract][Full Text] [Related]
14. On the physical origin of conical bubble structure under an ultrasonic horn. Dubus B; Vanhille C; Campos-Pozuelo C; Granger C Ultrason Sonochem; 2010 Jun; 17(5):810-8. PubMed ID: 20371200 [TBL] [Abstract][Full Text] [Related]
15. Spectroscopic and thermodynamic features of conical bubble luminescence. Godínez FA; Navarrete M; Sánchez-Ake C; Mejía-Uriarte EV; Villagrán-Muniz M Ultrason Sonochem; 2012 May; 19(3):668-81. PubMed ID: 21963140 [TBL] [Abstract][Full Text] [Related]
16. Spatial study on a multibubble system for sonochemistry by laser-light scattering. Tuziuti T; Yasui K; Iida Y Ultrason Sonochem; 2005 Jan; 12(1-2):73-7. PubMed ID: 15474955 [TBL] [Abstract][Full Text] [Related]
17. New approach for quantitative measurement of ultrasonic cavitation yields. Noh SC; Kim JY; Kim JS; Kang JH; Min HK; Ho H Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1241-4. PubMed ID: 22254541 [TBL] [Abstract][Full Text] [Related]
18. Control of inertial acoustic cavitation in pulsed sonication using a real-time feedback loop system. Desjouy C; Poizat A; Gilles B; Inserra C; Bera JC J Acoust Soc Am; 2013 Aug; 134(2):1640-6. PubMed ID: 23927204 [TBL] [Abstract][Full Text] [Related]
19. Theoretical and experimental validation of a dual-frequency excitation method for spatial control of cavitation. Sokka SD; Gauthier TP; Hynynen K Phys Med Biol; 2005 May; 50(9):2167-79. PubMed ID: 15843744 [TBL] [Abstract][Full Text] [Related]
20. Experimental study of sono-crystallisation of ZnSO4·7H2O, and interpretation by the segregation theory. Harzali H; Baillon F; Louisnard O; Espitalier F; Mgaidi A Ultrason Sonochem; 2011 Sep; 18(5):1097-106. PubMed ID: 21482476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]