These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 23932270)

  • 41. Effects of transcranial ultrasound and intravenous microbubbles on blood brain barrier permeability in a large animal model.
    Xie F; Boska MD; Lof J; Uberti MG; Tsutsui JM; Porter TR
    Ultrasound Med Biol; 2008 Dec; 34(12):2028-34. PubMed ID: 18692294
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A study on the primary and secondary nucleation of ice by power ultrasound.
    Chow R; Blindt R; Chivers R; Povey M
    Ultrasonics; 2005 Feb; 43(4):227-30. PubMed ID: 15567197
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Overview of experimental studies of biological effects of medical ultrasound caused by gas body activation and inertial cavitation.
    Miller DL
    Prog Biophys Mol Biol; 2007; 93(1-3):314-30. PubMed ID: 16989895
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transient subharmonic and ultraharmonic acoustic emission during dissolution of free gas bubbles.
    Biagi E; Breschi L; Masotti L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jun; 52(6):1048-54. PubMed ID: 16118987
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Water temperature dependence of single bubble sonoluminescence threshold.
    Germano M; Alippi A; Bettucci A; Brizi F; Passeri D
    Ultrasonics; 2010 Jan; 50(1):81-3. PubMed ID: 19758674
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of perfluorocarbon gases on the size and stability characteristics of phospholipid-coated microbubbles: osmotic effect versus interfacial film stabilization.
    Szíjjártó C; Rossi S; Waton G; Krafft MP
    Langmuir; 2012 Jan; 28(2):1182-9. PubMed ID: 22176688
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Theoretical model of ice nucleation induced by inertial acoustic cavitation. Part 2: Number of ice nuclei generated by a single bubble.
    Cogné C; Labouret S; Peczalski R; Louisnard O; Baillon F; Espitalier F
    Ultrason Sonochem; 2016 Jan; 28():185-191. PubMed ID: 26384898
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modeling of interaction between therapeutic ultrasound propagation and cavitation bubbles.
    Liebler M; Dreyer T; Riedlinger RE
    Ultrasonics; 2006 Dec; 44 Suppl 1():e319-24. PubMed ID: 16908041
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling photothermal and acoustical induced microbubble generation and growth.
    Krasovitski B; Kislev H; Kimmel E
    Ultrasonics; 2007 Dec; 47(1-4):90-101. PubMed ID: 17910969
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Loss of gas from echogenic liposomes exposed to pulsed ultrasound.
    Raymond JL; Luan Y; Peng T; Huang SL; McPherson DD; Versluis M; de Jong N; Holland CK
    Phys Med Biol; 2016 Dec; 61(23):8321-8339. PubMed ID: 27811382
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.
    Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K
    J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Investigation of the effect of power ultrasound on the nucleation of water during freezing of agar gel samples in tubing vials.
    Kiani H; Sun DW; Delgado A; Zhang Z
    Ultrason Sonochem; 2012 May; 19(3):576-81. PubMed ID: 22070859
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A physiological model of gas pockets in crevices and their behavior under compression.
    Chappell MA; Payne SJ
    Respir Physiol Neurobiol; 2006 May; 152(1):100-14. PubMed ID: 16169777
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Direct observation of cavitation fields at 23 and 515 kHz.
    Price GJ; Harris NK; Stewart AJ
    Ultrason Sonochem; 2010 Jan; 17(1):30-3. PubMed ID: 19464940
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The efficiency and stability of bubble formation by acoustic vaporization of submicron perfluorocarbon droplets.
    Reznik N; Shpak O; Gelderblom EC; Williams R; de Jong N; Versluis M; Burns PN
    Ultrasonics; 2013 Sep; 53(7):1368-76. PubMed ID: 23652262
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A study of bubble activity generated in ex vivo tissue by high intensity focused ultrasound.
    McLaughlan J; Rivens I; Leighton T; Ter Haar G
    Ultrasound Med Biol; 2010 Aug; 36(8):1327-44. PubMed ID: 20691922
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Observations of three-dimensional Richtmyer-Meshkov instability on a membraneless gas bubble.
    Chu HY; Chen DK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):051002. PubMed ID: 23767479
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pre-clinical study of in vivo magnetic resonance-guided bubble-enhanced heating in pig liver.
    Elbes D; Denost Q; Laurent C; Trillaud H; Rullier A; Quesson B
    Ultrasound Med Biol; 2013 Aug; 39(8):1388-97. PubMed ID: 23562012
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Controlling the locus of bubble nucleation by dissolved gases in heterogeneous liquid-liquid systems.
    Priyananda P; Hawkett BS; Warr GG
    Langmuir; 2010 Jan; 26(2):684-91. PubMed ID: 19754069
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Creation of cavitation activity in a microfluidic device through acoustically driven capillary waves.
    Tandiono ; Ohl SW; Ow DS; Klaseboer E; Wong VV; Camattari A; Ohl CD
    Lab Chip; 2010 Jul; 10(14):1848-55. PubMed ID: 20596559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.